MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Winners of Rishbeth Prizes 2023

We are pleased to announce that following Spring MIST 2023 the Rishbeth Prizes this year are awarded to Sophie Maguire (University of Birmingham) and Rachel Black (University of Exeter).

Sophie wins the prize for the best MIST student talk which was entitled “Large-scale plasma structures and scintillation in the high-latitude ionosphere”. Rachel wins the best MIST poster prize, for a poster entitled “Investigating different methods of chorus wave identification within the radiation belts”. Congratulations to both Sophie and Rachel!

As prize winners, Sophie and Rachel will be invited to write articles for Astronomy & Geophysics, which we look forward to reading.

MIST Council extends their thanks to the University of Birmingham for hosting the Spring MIST meeting 2023, and to the Royal Astronomical Society for their generous and continued support of the Rishbeth Prizes.

Nominations for MIST Council

We are pleased to open nominations for MIST Council. There are two positions available (detailed below), and elected candidates would join Beatriz Sanchez-Cano, Jasmine Kaur Sandhu, Andy Smith, Maria-Theresia Walach, and Emma Woodfield on Council. The nomination deadline is Friday 26 May.

Council positions open for nomination

  • MIST Councillor - a three year term (2023 - 2026). Everyone is eligible.
  • MIST Student Representative - a one year term (2023 - 2024). Only PhD students are eligible. See below for further details.

About being on MIST Council


If you would like to find out more about being on Council and what it can involve, please feel free to email any of us (email contacts below) with any of your informal enquiries! You can also find out more about MIST activities at mist.ac.uk.

Rosie Hodnett (current MIST Student Representative) has summarised their experience on MIST Council below:
"I have really enjoyed being the PhD representative on the MIST council and would like to encourage other PhD students to nominate themselves for the position. Some of the activities that I have been involved in include leading the organisation of Autumn MIST, leading the online seminar series and I have had the opportunity to chair sessions at conferences. These are examples of what you could expect to take part in whilst being on MIST council, but the council will welcome any other ideas you have. If anyone has any questions, please email me at This email address is being protected from spambots. You need JavaScript enabled to view it..”

How to nominate

If you would like to stand for election or you are nominating someone else (with their agreement!) please email This email address is being protected from spambots. You need JavaScript enabled to view it. by Friday 26 May. If there is a surplus of nominations for a role, then an online vote will be carried out with the community. Please include the following details in the nomination:
  • Name
  • Position (Councillor/Student Rep.)
  • Nomination Statement (150 words max including a bit about the nominee and your reasons for nominating. This will be circulated to the community in the event of a vote.)
 
MIST Council contact details

Rosie Hodnett - This email address is being protected from spambots. You need JavaScript enabled to view it.
Mathew Owens - This email address is being protected from spambots. You need JavaScript enabled to view it.
Beatriz Sanchez-Cano - This email address is being protected from spambots. You need JavaScript enabled to view it.
Jasmine Kaur Sandhu - This email address is being protected from spambots. You need JavaScript enabled to view it.
Andy Smith - This email address is being protected from spambots. You need JavaScript enabled to view it.
Maria-Theresia Walach - This email address is being protected from spambots. You need JavaScript enabled to view it.
Emma Woodfield - This email address is being protected from spambots. You need JavaScript enabled to view it.
MIST Council email - This email address is being protected from spambots. You need JavaScript enabled to view it.

RAS Awards

The Royal Astronomical Society announced their award recipients last week, and MIST Council would like to congratulate all that received an award. In particular, we would like to highlight the following members of the MIST Community, whose work has been recognised:
  • Professor Nick Achilleos (University College London) - Chapman Medal
  • Dr Oliver Allanson (University of Birmingham) - Fowler Award
  • Dr Ravindra Desai (University of Warwick) - Winton Award & RAS Higher Education Award
  • Professor Marina Galand (Imperial College London) - James Dungey Lecture

New MIST Council 2021-

There have been some recent ingoings and outgoings at MIST Council - please see below our current composition!:

  • Oliver Allanson, Exeter (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2024 -- Chair
  • Beatriz Sánchez-Cano, Leicester (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2024
  • Mathew Owens, Reading (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2023
  • Jasmine Sandhu, Northumbria (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2023 -- Vice-Chair
  • Maria-Theresia Walach, Lancaster (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2022
  • Sarah Badman, Lancaster (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2022
    (co-opted in 2021 in lieu of outgoing councillor Greg Hunt)

Charter amendment and MIST Council elections open

Nominations for MIST Council open today and run through to 8 August 2021! Please feel free to put yourself forward for election – the voting will open shortly after the deadline and run through to the end of August. The positions available are:

  • 2 members of MIST Council
  • 1 student representative (pending the amendment below passing)

Please email nominations to This email address is being protected from spambots. You need JavaScript enabled to view it. by 8 August 2021. Thank you!

Charter amendment

We also move to amend the following articles of the MIST Charter as demonstrated below. Bold type indicates additions and struck text indicates deletions. Please respond to the email on the MIST mailing list before 8 August 2021 if you would like to object to the amendment; MIST Charter provides that it will pass if less than 10% of the mailing list opposes its passing. 

4.1  MIST council is the collective term for the officers of MIST and consists of six individuals and one student representative from the MIST community.

5.1 Members of MIST council serve terms of three years, except for the student representative who serves a term of one year.

5.2 Elections will be announced at the Spring MIST meeting and voting must begin within two months of the Spring MIST meeting. Two slots on MIST council will be open in a given normal election year, alongside the student representative.

5.10 Candidates for student representative must not have submitted their PhD thesis at the time that nominations close.

Nuggets of MIST science, summarising recent papers from the UK MIST community in a bitesize format.

If you would like to submit a nugget, please fill in the following form: https://forms.gle/Pn3mL73kHLn4VEZ66 and we will arrange a slot for you in the schedule. Nuggets should be 100–300 words long and include a figure/animation. Please get in touch!
If you have any issues with the form, please contact This email address is being protected from spambots. You need JavaScript enabled to view it.. 

Evaluating the performance of a plasma analyzer for a space weather monitor mission concept

By Georgios Nicolaou (Mullard Space Science Laboratory/UCL; Southwest Research Institute)

Georgios Nicolaou et al. developed a forward model of an electrostatic analyzer response which simulates observations of solar wind protons with their velocities following the classic Maxwell distribution function. This paper studies the observations of extreme space weather features such as, fast ICMEs and fast solar wind streams, but also the observations of a typical background solar wind. The model takes into account the limited sampling and resolution of the instrument. The analysis of the modeled observations derives the plasma parameters from the statistical moments of the observed velocity distribution functions. This is a classic novel analysis method, which is appropriate for space weather missions as it can be applied onboard spacecraft and predict the solar wind plasma bulk parameters very fast, reducing the required telemetry and computational resources. The comparison between the analysis results and the input parameters identifies the accuracy of the specific method applied to the observations by the instrument. The authors address the limitation of the moments analysis and demonstrate how we can overcome these limitations by fitting the observations with distribution function models. The fitting analysis is demonstrated in observations of fast ICMEs (see Figure 1) and fast solar wind streams identified in ACE observations.

 Timeseries of plasma parameters, indicating the accuracy of the fitting analysis as a function of time.

Figure 1. Time series of (top) the plasma density, (middle) bulk speed, and (bottom) scalar temperature within a fast ICME recorded by ACE from 16 July 2000 01:00 to 17 July 2000 08:00. The color represents the accuracy with which the fitting analysis of the observations by our instrument derives the corresponding parameters.

Please see the paper for full details:

Nicolaou, G., Wicks, R. T., Rae, I. J., & Kataria, D. O. (2020). Evaluating the performance of a plasma analyzer for a space weather monitor mission concept. Space Weather, 18, e2020SW002559. Accepted Author Manuscript. https://doi.org/10.1029/2020SW002559

The Global Distribution of Ultra‐Low‐Frequency Waves in Jupiter's Magnetosphere

By Arthur Manners (Imperial College London)

A key component to an understanding of Jupiter’s magnetosphere is how energy and momentum are transported through the system; how are perturbations communicated to regions many thousands of Earth radii distant? In the terrestrial magnetosphere, magnetohydrodynamic (MHD) waves with frequencies in the ultra-low-frequency band (~1mHz – 1Hz) play a key role in communication throughout the system, in some cases causing the magnetospheric cavity to resonate at its natural frequencies. The Jovian magnetosphere also seems to exhibit these phenomena but limited in-situ data has prevented a fuller picture from emerging. To remedy this, we have searched the heritage magnetometer data from Galileo, Ulysses, Voyager 1 & 2 and Pioneer 10 & 11 for ULF waves. The large plasma density in the equatorial magnetodisk and comparatively rarefied high-latitude regions means the Alfvén speed is orders of magnitude lower in the disk than elsewhere, effectively confining waves to the centremost region of the magnetic field lines.

We focused our study to data where spacecraft traversed the magnetodisk and constructed a catalogue of large-amplitude ULF waves. We found several hundred events with periods spanning ~ 5 – 60 mins, with preferential periods at ~ 15 mins, ~ 30 mins and ~ 40 mins, consistent with case studies in the literature. The resultant distribution can be seen in Fig. 1. Regions close to the magnetopause at noon and along the dusk flank appear to host ULF waves most often, suggesting an external driver (Fig. 1a). However, the waves seem to be most powerful in the inner magnetosphere, close to the plasma torus, suggesting wave energy may accumulate in the region (Fig. 1b). Further study of the torus region is ongoing to further probe these findings. Overall, these results provide crucial information into large scale energy transport and pathways in Jupiter's complex magnetosphere, with significant implications for wider magnetospheric processes.

Equatorial projections of the ULF wave samples, illustrating spatial variations in occurrence.

Fig. 1: An equatorial-plane projection of: (a) the total time spacecraft spent in each bin; (b) the ULF bandpower averaged over the events in each bin; (c) the proportion of time spacecraft spent in each region where significant ULF activity was observed; (d) the same as (c) but for the subset of events where only a single significant period was observed. White bins signify where there are no available data, and gray bins signify regions where spacecraft visited but observed no events.

Please see the paper for full details:

Manners, H., & Masters, A. (2020). The global distribution of ultralow‐frequency waves in Jupiter's magnetosphere. Journal of Geophysical Research: Space Physics, 125, e2020JA028345. https://doi.org/10.1029/2020JA028345

Using Dimensionality Reduction and Clustering Techniques to Classify Space Plasma Regimes

By Mayur R. Bakrania (MSSL, UCL)

Particle populations in collisionless space plasma environments are traditionally characterised by their moments. Distribution functions, however, provide the full picture of the state of each plasma environment. These distribution functions are not easily classified by a small number of parameters. We apply dimensionality reduction and clustering methods to particle distributions in pitch angle and energy space to distinguish between the different plasma regions. Dimensionality reduction is a specific type of unsupervised learning in which data in high-dimensional space is transformed to a meaningful representation in lower dimensional space. This transformation allows complex datasets to be characterised by analysis techniques with much higher computational efficiency. We use the following steps:

  1. An autoencoder to compress the data by a factor of 10 from a high-dimensional representation.
  2. A Principal Component Algorithm to further compress the data to a three-dimensional representation.
  3. The mean shift algorithm to determine how many populations are present in the data using this three-dimensional representation.
  4. An agglomerative clustering algorithm to assign each data-point to one of the populations.

We use electron data from the magnetotail to test the effectiveness of our method. The magnetotail is traditionally divided into three different regions: the plasma sheet (PS), the plasma sheet boundary layer (PSBL), and the lobes. Starting with the ECLAT database with associated classifications based on the plasma parameters, we identify 8 distinct groups of distributions, that are dependent upon significantly more complex plasma and field dynamics. Fig. 1 shows the average electron differential energy flux distributions for each cluster. We see large differences in the average pitch angle/energy distributions. Each distribution differs by the: peak flux energy, peak flux value, or the pitch angle anisotropy. The lack of identical distributions shows mean shift has not overestimated the number of clusters. This novel technique reveals new information on the physical processes shaping magnetotail electron distributions, and has significant implications for analysing a wide range of plasma regimes.

A multi-panel plot showing the distributions in pitch angle and energy space for each cluster.

Fig. 1: Average electron differential energy flux distributions as a function of pitch angle and energy for each of the eight clusters (A–H) classified by the agglomerative clustering algorithm. Each cluster is assigned a magnetotail region (included in the sub-captions) based on our interpretation of their plasma and magnetic field parameters.

Please see the paper for full details:

M. R. Bakrania, Rae I. J., Walsh A. P., Verscharen D. and Smith A. W. (2020). Using Dimensionality Reduction and Clustering Techniques to Classify Space Plasma Regimes. Front. Astron. Space Sci. 7:593516. https://doi.org/10.3389/fspas.2020.593516

Polytropic Behavior of Solar Wind Protons Observed by Parker Solar Probe

by Georgios Nicolaou (MSSL, UCL)

The polytropic equation relates the density and temperature of a fluid through the polytropic index. The polytropic index is a crucial parameter in understanding the physical mechanisms acting on the fluid. In this study, we investigate the large time-scale and the short time-scale fluctuations of the plasma proton density and temperature in order to determine their polytropic index. The large time-scale fluctuations which are associated with the plasma expansion within the heliosphere, follow a polytropic model with a polytropic index ~5/3. The specific behavior is consistent with an adiabatic expanding plasma protons with three degrees of freedom. The radial profile of the density follows in general, the model for a spherical expansion with a constant radial speed (see Figure 1). However, the short time-scale fluctuations, which are associated with plasma turbulence, follow a polytropic model with a polytropic index ~2.7. Interestingly, the short time-scale polytropic index is found to be correlated with the interplanetary magnetic field. We discuss the possibly of a mechanism that supplies/retains energy from the plasma protons in these short time-scales, or a mechanism that restricts the effective degrees of freedom of the protons. We finally highlight the importance of future studies that examine the polytropic index along with the characteristics of the full 3D distributions of the plasma ions and electrons.

Plots showing how the proton density and proton temperature vary with radial distance.

Figure 1. Two-dimensional histograms of (top) the proton density and (bottom) the proton temperature as functions of the radial distance for time interval 1. The magenta line in the top panel shows the expected density for an expansion model with constant speed, n  r-2. In the lower panel, the magenta line shows the expected temperature of a polytropic radial expansion model with γ = 5/3 while the blue lines represent expansion models with γ = 2.7. The grey line illustrates the slope determined by Huang et al. 2020 for the parallel proton temperature of fast solar wind observed by SPC.

Please see the paper for full details:

Nicolaou, G., Livadiotis, G., Wicks, R. T., Verscharen, D., Maruca, B. A., (2020). Polytropic Behavior of Solar Wind Protons Observed by Parker Solar Probe. The Astrophysical Journal, 901, 1, https://doi.org/10.3847/1538-4357/abaaae.

Evaluating the ionospheric mass source for the magnetospheres of Jupiter and Saturn

By Carley J. Martin (Lancaster University)

Ionospheric outflow is a flow of plasma initiated by a loss of equilibrium along a magnetic field line. This induces an electric field due to the separation of electrons and ions in a gravitational field. At Earth, this process is initiated by dayside reconnection in the Dungey cycle. But, is this the case at the gas giants?  

Valek+ (2019) show that there is an increased outflow on field lines which map between the moon Io and the auroral oval at Jupiter, and very little in the actual polar cap. Hence, in our analysis, we evaluate over these latitudes at Jupiter and Saturn. This also means we must consider a different driver than the Dungey cycle! 

We developed a model which estimates the number of charged particles that flow from the ionospheres of Jupiter and Saturn. We also look at the effects of field aligned currents (FACs) and centrifugal forces on the total source rates of the outflow. At Saturn, the inclusion of these effects increase the total flux from the ionosphere, and it is now comparable to in situ measurements by Cassini CAPS. At Jupiter, the total particle source is found to be comparable to Io as a source of plasma in the magnetosphere.  We find that the downward FACs and centrifugal force act to increase the flow of electrons from the ionosphere, and conversely upward FAC’s act to decrease outflow (see Figure below).  

The additional mass flux into the inner and middle magnetospheres of Jupiter and Saturn can substantially affect the dynamics and composition and so must be included in any future assessment! 

Figure shows how electron flux at the equator varies with radial distance, comparing the inclusion and exclusion of field-aligned currents.

Figure shows an example of results for the electron flux mapped to the equator; solid green is with field‐aligned currents; dotted green is without field‐aligned currents. The insert shows the shape of the field‐aligned currents themselves. The electron flux is highly modified by the field‐aligned currents present, where it is enhanced by a downward current and retarded by an upward current in the auroral regions.

Please see the papers for full details:

Martin, C. J., Ray, L. C., Felici, M., Constable, D. A., Lorch, C. T. S., & Kinrade, J., et al. (2020). The effect of field‐aligned currents and centrifugal forces on ionospheric outflow at Saturn. Journal of Geophysical Research: Space Physics, 125, e2019JA027728. https://doi.org/10.1029/2019JA027728

Martin, C. J., Ray, L. C., Constable, D. A., Southwood, D. J., Lorch, C. T. S., & Felici, M. (2020). Evaluating the ionospheric mass source for Jupiter's magnetosphere: An ionospheric outflow model for the auroral regions. Journal of Geophysical Research: Space Physics, 125, e2019JA027727. https://doi.org/10.1029/2019JA027727