MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Announcement of New MIST Council 2025

We are very pleased to announce the following members of the community have been elected to MIST Council:

  • Gemma Bower (University of Leicester), MIST Councillor
  • Tom Elsden (University of St Andrews), MIST Councillor
  • Cameron Patterson (Lancaster University), MIST Councillor
  • Fiona Ball (University of Southampton), Student Representative

They will begin their terms in July 2025.

We thank outgoing MIST Council members: Maria Walach, Chiara Lazzeri and Emma Woodfield. Andy Smith will remain on council a little longer as a co-opted member to cover Rosie Johnson's maternity leave.

The current composition of Council can be found on our website (https://www.mist.ac.uk/community/mist-council).

Announcement of New MIST Councillors.

We are very pleased to announce the following members of the community have been elected unopposed to MIST Council:

  • Rosie Johnson (Aberystwyth University), MIST Councillor
  • Matthew Brown (University of Birmingham), MIST Councillor
  • Chiara Lazzeri (MSSL, UCL), Student Representative

Rosie, Matthew, and Chiara will begin their terms in July. This will coincide with Jasmine Kaur Sandhu, Beatriz Sanchez-Cano, and Sophie Maguire outgoing as Councillors.

The current composition of Council can be found on our website, and this will be amended in July to reflect this announcement (https://www.mist.ac.uk/community/mist-council).

Nominations are open for MIST Council

We are very pleased to open nominations for MIST Council. There are three positions available (detailed below), and elected candidates would join Georgios Nicolaou, Andy Smith, Maria-Theresia Walach, and Emma Woodfield on Council. The nomination deadline is Friday 31 May.

Council positions open for nomination

2 x MIST Councillor - a three year term (2024 - 2027). Everyone is eligible.

MIST Student Representative - a one year term (2024 - 2025). Only PhD students are eligible. See below for further details.

About being on MIST Council

If you would like to find out more about being on Council and what it can involve, please feel free to email any of us (email contacts below) with any of your informal enquiries! You can also find out more about MIST activities at mist.ac.uk. Two of our outgoing councillors, Beatriz and Sophie, have summarised their experiences being on MIST Council below.

Beatriz Sanchez-Cano (MIST Councillor):

"Being part of the MIST council for the last 3 years has been a great experience personally and professionally, in which I had the opportunity to know better our community and gain a larger perspective of the matters that are important for the MIST science progress in the UK. During this time, I’ve participated in a number of activities and discussions, such as organising the monthly MIST seminars, Autumn MIST meetings, writing A&G articles, and more importantly, being there to support and advise our colleagues in cases of need together with the wonderful council members. MIST is a vibrant and growing community, and the council is a faithful reflection of it."

Sophie Maguire (MIST Student Representative):

"Being the student representative for MIST council has been an amazing experience. I have been part of organizing conferences, chairing sessions, and writing grant applications based on the feedback MIST has received. From a wider perspective, MIST has helped to grow and support my professional networks which in turn, directly benefits my PhD work as well. I would encourage any PhD student to apply for the role of MIST Student Representative and I would be happy to answer any questions or queries you have about the role."

How to nominate

If you would like to stand for election or you are nominating someone else (with their agreement!) please email This email address is being protected from spambots. You need JavaScript enabled to view it. by Friday 31 May. If there is a surplus of nominations for a role, then an online vote will be carried out with the community. Please include the following details in the nomination:

  1. Name
  2. Position (Councillor/Student Rep.)
  3. Nomination Statement (150 words max including a bit about the nominee and focusing on your reasons for nominating. This will be circulated to the community in the event of a vote.)

MIST Council details

  • Sophie Maguire, University of Birmingham, Earth's ionosphere - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Georgios Nicolaou, MSSL, solar wind plasma - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Beatriz Sanchez-Cano, University of Leicester, Mars plasma - This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Jasmine Kaur Sandhu, University of Leicester, Earth’s inner magnetosphere - This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Andy Smith, Northumbria University, Space Weather - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Maria-Theresia Walach, Lancaster University, Earth’s ionosphere - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Emma Woodfield, British Antarctic Survey, radiation belts - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • MIST Council email - This email address is being protected from spambots. You need JavaScript enabled to view it. 

Winners of Rishbeth Prizes 2023

We are pleased to announce that following Spring MIST 2023 the Rishbeth Prizes this year are awarded to Sophie Maguire (University of Birmingham) and Rachel Black (University of Exeter).

Sophie wins the prize for the best MIST student talk which was entitled “Large-scale plasma structures and scintillation in the high-latitude ionosphere”. Rachel wins the best MIST poster prize, for a poster entitled “Investigating different methods of chorus wave identification within the radiation belts”. Congratulations to both Sophie and Rachel!

As prize winners, Sophie and Rachel will be invited to write articles for Astronomy & Geophysics, which we look forward to reading.

MIST Council extends their thanks to the University of Birmingham for hosting the Spring MIST meeting 2023, and to the Royal Astronomical Society for their generous and continued support of the Rishbeth Prizes.

Nominations for MIST Council

We are pleased to open nominations for MIST Council. There are two positions available (detailed below), and elected candidates would join Beatriz Sanchez-Cano, Jasmine Kaur Sandhu, Andy Smith, Maria-Theresia Walach, and Emma Woodfield on Council. The nomination deadline is Friday 26 May.

Council positions open for nomination

  • MIST Councillor - a three year term (2023 - 2026). Everyone is eligible.
  • MIST Student Representative - a one year term (2023 - 2024). Only PhD students are eligible. See below for further details.

About being on MIST Council


If you would like to find out more about being on Council and what it can involve, please feel free to email any of us (email contacts below) with any of your informal enquiries! You can also find out more about MIST activities at mist.ac.uk.

Rosie Hodnett (current MIST Student Representative) has summarised their experience on MIST Council below:
"I have really enjoyed being the PhD representative on the MIST council and would like to encourage other PhD students to nominate themselves for the position. Some of the activities that I have been involved in include leading the organisation of Autumn MIST, leading the online seminar series and I have had the opportunity to chair sessions at conferences. These are examples of what you could expect to take part in whilst being on MIST council, but the council will welcome any other ideas you have. If anyone has any questions, please email me at This email address is being protected from spambots. You need JavaScript enabled to view it..”

How to nominate

If you would like to stand for election or you are nominating someone else (with their agreement!) please email This email address is being protected from spambots. You need JavaScript enabled to view it. by Friday 26 May. If there is a surplus of nominations for a role, then an online vote will be carried out with the community. Please include the following details in the nomination:
  • Name
  • Position (Councillor/Student Rep.)
  • Nomination Statement (150 words max including a bit about the nominee and your reasons for nominating. This will be circulated to the community in the event of a vote.)
 
MIST Council contact details

Rosie Hodnett - This email address is being protected from spambots. You need JavaScript enabled to view it.
Mathew Owens - This email address is being protected from spambots. You need JavaScript enabled to view it.
Beatriz Sanchez-Cano - This email address is being protected from spambots. You need JavaScript enabled to view it.
Jasmine Kaur Sandhu - This email address is being protected from spambots. You need JavaScript enabled to view it.
Andy Smith - This email address is being protected from spambots. You need JavaScript enabled to view it.
Maria-Theresia Walach - This email address is being protected from spambots. You need JavaScript enabled to view it.
Emma Woodfield - This email address is being protected from spambots. You need JavaScript enabled to view it.
MIST Council email - This email address is being protected from spambots. You need JavaScript enabled to view it.

Nuggets of MIST science, summarising recent papers from the UK MIST community in a bitesize format.

If you would like to submit a nugget, please fill in the following form: https://forms.gle/Pn3mL73kHLn4VEZ66 and we will arrange a slot for you in the schedule. Nuggets should be 100–300 words long and include a figure/animation. Please get in touch!
If you have any issues with the form, please contact This email address is being protected from spambots. You need JavaScript enabled to view it.. 

Estimating Soft X-Ray Emission from Uranus's Magnetosheath

Estimating Soft X-Ray Emission from Uranus's Magnetosheath

By Dan Naylor (Lancaster University)

Soft X-rays can be generated within planetary magnetosheaths due to charge exchange between neutrals and highly charged solar wind ions such as O^7+. Imaging of the soft X-rays is an emerging technology that aims to provide global and dynamic views of the magnetosheath and cusps, and their response to solar wind driving. The ESA-CAS SMILE mission will soon be launched with a soft X-ray imager (SXI) instrument onboard to investigate the terrestrial magnetosheath. We explore the viability of similar investigations at Uranus.
Uranus has one of the most unusual and complex environments in the solar system. A large obliquity combined with a highly tilted, offset magnetic axis result in an asymmetric and constantly varying magnetosphere where the plasma and neutral source rates from the moons are unconstrained. We impose a simple bullet shaped magnetopause and moon tori informed by Voyager 2 observations to predict soft X-ray emission from the Uranian magnetosheath. We estimate volumetric emission rates of soft X-rays are on the order of 10^-10 photon cm^-3 s^-1, being higher at equinox due to the orientation of the magnetosheath relative to the moon tori. Simple estimates of intensity and flux find that a SMILE-like instrument could detect ~100 photons in a quarter of a planetary rotation at a distance of 212 R_U, as shown in the figure. A hypothetical future imager, with improved FOV and effective area, would detect ~20,000 photons per planetary rotation at 100 R_U. These are promising initial results that suggest imaging of the magnetosheath is possible within key system timescales. Future studies will include magnetospheric cusps and a full range of solar wind ions, which are anticipated to increase emission rates.

Modelled intensity maps for a SMILE‐like SXI at 212 R_U from different viewing geometries at (top row) equinox, where the neutrals are edge-on to the Sun, and (bottom row) solstice, where the neutrals are ring on to the Sun: (a/d) front‐on, (b/e) top‐down and (c/f) side‐on. The different panels show that the amount of flux detected is dependent on viewing position, and an orbital mission should consider the implications of different possible imaging positions.

 

See publication for details:

Naylor, D., Ray, L. C., Dunn, W. R., Jasinski, J. M., & Paty, C. (2025). Estimating soft X-ray emission from Uranus's magnetosheath. Journal of Geophysical Research: Space Physics, 130, e2025JA034171. https://doi.org/10.1029/2025JA034171

 

Omega Bands as a Source of Large dB/dt in the Dawn Sector

Omega Bands as a Source of Large dB/dt in the Dawn Sector

By Rosie Hodnett (University of Leicester)

Omega bands are a type of aurora which occur in the dawn sector and drift eastwards. They are often described as having a morphology similar to that of the Greek letter Ω. Omega bands have been shown to have the potential to cause geomagnetically induced currents, which are an important area of research as they are recognised as a hazard to our infrastructure, such as power grids.

In this study, we have examined an omega band event which occurred from 23 – 04 UT on 2012-11-13—14 using multiple instruments around Tromsø, Norway (69.6°N, 19.2°E). The first two panels (a-b) of the figure show EISCAT UHF/VHF electron density measurements, panel (c) shows a keogram of all-sky camera (ASC) data. It is clear that when the luminous aurora passes over head, enhancements in electron density are observed.

Panel (d) shows the magnetic field perturbations as measured by the IMAGE magnetometer and (e) shows dB/dt. For this event, we saw large perturbations in the Y component of the magnetic field, with a maximum peak of approx. 915 nT. The rapid motion of the omega bands leads to large dB/dt of above 10 nT/s.

Panel (f) shows AMPERE data, where the yellow dashed line is the location of EISCAT, where red is upward field aligned current (FAC) and blue is downward FAC. The auroral signatures and large dB/dt are evident when EISCAT is located between the boundary of region 1 and 2 current systems.

Panel (g) shows AL, where negative excursions due to the ground based magnetic perturbations of the omega bands are apparent. It is important that these rapid variations in AL are not misidentified as substorms, because as well as substorms, we have shown that omega band activity in the dawn sector causes drops in AL.

See publication for details:

Hodnett, R. M., Milan, S. E., Nozawa, S., Raita, T., Gjerloev, J. W., Vines, S. K., & Paxton, L. J. (2025). Omega bands as a source of large dB/dt in the dawn sector. Journal of Geophysical Research: Space Physics, 130, e2025JA034342. https://doi.org/10.1029/2025JA034342

Polytropic Analysis of Large-scale Compressive Fluctuations in the Solar Wind: Fluid and Kinetic Behavior

By Ioannou Charalambos (University College London)

Large-scale compressive plasma fluctuations are a minor component of solar wind turbulence but still significantly shape the turbulent cascade. They perturb the pressure and internal energy of the plasma, and thus influence the evolution of the solar wind’s bulk properties (i.e., density, temperature) and can subject the plasma to various large-scale temperature anisotropy and beam instabilities. Observations of the solar wind show that these fluctuations are typically characterized by an anticorrelation between the plasma density and the magnitude of the magnetic field, and thus share polarization properties with slow waves. The nature of the slow modes in the solar wind with respect to the polarization properties of the plasma has been found to be in better agreement with the magnetohydrodynamic (MHD) slow mode predictions compared to that of the kinetic slow mode.

The polytropic behaviour of the plasma in compressive fluctuations may provide further insight into the nature of the slow mode, since the MHD, Chew–Goldberger–Low (CGL), and kinetic slow modes predict different proton polytropic indices (γ). Using Solar Orbiter observations, we determine the effective polytropic index of protons and electrons for two compressive fluctuations events, and compare them with the theoretical expectations of MHD, CGL, and kinetic slow modes. The first event exhibits characteristics of the MHD slow mode (γp ≈ 1.7) while the second event is more consistent with the kinetic slow mode (γp ≈ 3). We show that the Coulomb collisionality of the first event is stronger than the second event which may explain the different behaviour between the two events. Additionally, multiscale analysis shows that nature of the two events does not change significantly with scale. However, a scale dependence is observed for both events that suggests that kinetic effects become more prominent at smaller scales.

Polytropic index results for protons and electrons in the first (left) and second (right) compressive fluctuations events. R_p is the Pearson correlation coefficient. Panels (a)–(c) show the proton results and panels (d)–(f) show the electron results. Panels (a) and (d) show the parallel, panels (b) and (e) the perpendicular, and panels (c) and (f) the isotropic polytropic index results. The colour of the data points represents the time instance of the corresponding measurement in the interval. The first event shares characteristics with the MHD slow mode with an isotropic proton polytropic index of γ_p ≈ 5/3, while the second event shares characteristics with an Ion Acoustic wave with a parallel proton polytropic index of γ_(∥p) ≈ 3

See publication for details:
Ioannou, C. et al. (2025) ‘Polytropic Analysis of Large-scale Compressive Fluctuations in the Solar Wind: Fluid and Kinetic Behavior’, The Astrophysical Journal, 988(2), p. 253. Available at: https://doi.org/10.3847/1538-4357/adeb7b

Ubiquitous threshold for coherent structures in solar wind turbulence

By Alina Bendt (University of Warwick)

The solar wind may be heated by turbulence. Coherent structures which are one possible mediating mechanism of the turbulent cascade may dissipate energy. The partial variance increment (PVI) is routinely used to characterize and identify coherent structures. Previously the threshold beyond which fluctuations may be coherent structures was identified by comparisons to a Gaussian distribution. We compare wavelet decompositions with the Haar and 10th-order Daubechies wavelets to determine the threshold from the physical character of the fluctuations. These wavelets are sensitive to sharp changes and oscillations in the time series respectively. Comparisons of the fluctuation distributions obtained from these two wavelets reveal a core and tail., the latter is dominated by coherent structures. The transition from core to tail identifies the PVI threshold. This threshold coincides with the PVI value where the PVI distributions obtained from the Haar and Db10 wavelets start to depart from each other.  We find a single value for the threshold in each the kinetic and inertial ranges. This threshold is independent of heliocentric distance and solar wind conditions. The detailed behaviour of the fluctuations above the threshold varies, reflecting different ways that turbulence develops with distance from the sun. This suggests an underlying mechanism governing these coherent structures that is the same regardless of the specific plasma conditions.

 

Compensated Quantile-Quantile (QQ) plots discriminate where the Haar (sharp changes) and Db10 (wave-packet) decomposed PVI fluctuation distributions diverge (gray shading) for all solar wind intervals in the kinetic range. The upper panels [(a)–(c)] illustrate the compensated QQ plots. [(d)–(j)] are compensated QQ plots in the kinetic range overplotted for all intervals. These are divided into three categories based on heliocentric distance, (i) 0.3 R < 0.4 au, (ii) 0.4 < R < 0.8 au, and (iii) R > 0.8 au (rows), shown for all magnetic field components (columns). The different scales τ are color coded from dark blue (0.25 s) to light blue (2 s). The overplotted PVI threshold of 2.2 (marked by a black vertical line) is the same for all panels, capturing where the Haar and Db10 derived PVI distributions diverge. The gray shaded region determined from the variance of the threshold ranges from 2.1 to 2.7. This threshold is independent of the scale τ of the turbulence and heliocentric distance. Dashed horizontal lines are at PVI ±0.2 for reference.

See publication for details:
Bendt & Chapman (2025) Ubiquitous threshold for coherent structures in solar wind turbulence, Phys. Rev. Research, doi:10.1103/PhysRevResearch.7.023176

Quantifying the number of false positive substorms identified in the SuperMAG SML index arising from enhancements in magnetospheric convection

By Christian Lao (MSSL, University College London)

Substorms can be identified from negative bays in the SML index, which traces the minimum northward ground magnetic deflection at auroral latitudes, produced by enhancements of the westward electrojet. For substorms, negative bays are caused by the closure of the Substorm Current Wedge through the ionosphere, typically localized to the nightside and centred around 23-00 magnetic local time (MLT). In this case, the equivalent current pattern that causes the magnetic deflections is given the name Disturbance Polar (DP) 1. However, negative bays may also form when the westward electrojet is enhanced by increased convection, driving Pedersen and Hall currents in the auroral zone. Convection enhancements also strengthen the eastward electrojet, monitored by SMU index. In this case, the equivalent current pattern that produces the magnetic deflections is called DP2.

In this study, we investigated the contributions of the magnetic perturbations from the DP1 and DP2 current patterns to substorm-like magnetic bays identified in SML using the SOPHIE technique of Forsyth et al. (2015), https://doi.org/10.1002/2015ja021343. SOPHIE attempts to distinguish between the DP1 and DP2 enhancements, whereas other SML-based substorm identification methods don’t (e.g. Newell & Gjerloev, 2011; Ohtani+, 2020; etc). However, despite this, we find evidence that between 1997 and 2019 up to 59% of the 30,329 events originally identified by SOPHIE as substorms come from enhancements of DP2, which are unrelated to substorm phenomena, on top of the 2,627 convection enhancement events already identified. We highlight that any “substorm” list is, in fact, a list of magnetic enhancements, auroral enhancements, etc., which may or may not correspond to substorm activity and should be treated that way.

 

See publication for details:
Lao, C. J.Forsyth, C.Freeman, M. P., & Gjerloev, J. W. (2025). Separating DP1 and DP2 current pattern contributions to substorm-like intensifications in SMLJournal of Geophysical Research: Space Physics130, e2024JA033592. https://doi.org/10.1029/2024JA033592