Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

STFC Policy Internship Scheme now open

This year has proved the critical importance of science having a voice within Parliament. But how does scientific evidence come to the attention of policy makers? If you are a STFC-funded PhD student, you can experience this first-hand through our Policy Internship Scheme, which has just opened for applications for 2020/21. During these three-month placements, students are hosted either at the Parliamentary Office of Science and Technology (POST) or the Government Office for Science (GO Science).

POST is an independent office of the Houses of Parliament which provides impartial evidence reviews on topical scientific issues to MPs and Peers. Interns at POST will research, draft, edit and publish a briefing paper summarising the evidence base on an important or emerging scientific issue. GO Science works to ensure that Government policies and decisions are informed by the best scientific evidence and strategic long-term thinking. Placements at GO Science are likely to involve undertaking research, drafting briefing notes and background papers, and organising workshops and meetings.

The scheme offers a unique opportunity to experience the heart of UK policy making and to explore careers within the science-policy interface. The placements are fully funded and successful applicants will receive a three-month extension to their final PhD deadline.

For full information and to see case studies of previous interns, please see our website. The closing date is 10 September 2020 at 16.00.

Applied Sciences special issue: Dynamical processes in space plasmas


Applied Sciences is to publish a special issue on the topic of dynamical processes in space plasmas which is being guest edited by Georgious Nicolaou. Submissions are welcome until 31 March 2021, and submission instructions for authors can be found on the journal website. For general questions, This email address is being protected from spambots. You need JavaScript enabled to view it..

A Summary of the SWIMMR Kick-Off Meeting

The kick-off event for the Space Weather Innovation, Measurement, Modelling and Risk Study (one of the Wave 2 programmes of the UKRI Strategic Priorities Fund) took place in the Wolfson Library of the Royal Society on Tuesday November 26th. Seventy-five people attended the event, representing a range of academic institutions, as well as representatives from industry, government and public sector research establishments such as the UK Met Office. 

The morning session of the meeting consisted of five presentations, introducing the programme and its relevance to government, the Research Councils and the Met Office, as well as describing details of the potential calls. The presentations were as follows:

  •  Prof John Loughhead (Chief Scientific Advisor to BEIS) - Space Weather Innovation, Measurement, Modelling and Risk Programme (a governmental perspective). The slides from Prof John Loughhead's talk are available here.
  • Prof Chris Mutlow (Director of STFC RAL Space) - SWIMMR: Project funded by the Strategic Priorities Fund (a perspective from STFC).  The slides from Prof Chris Mutlow's talk are available here.
  • Jacky Wood (Head of Business Partnerships at NERC) - Space Weather Innovation, Measurement, Modelling and Risk (SWIMMR) - A NERC perspective.  The slides from Jacky Wood's talk are available here.
  • Dr. Ian McCrea (Senior Programme Manager for SWIMMR) -  SWIMMR: Space Weather Innovation, Measurement, Modelling and Risk: A wave 2 programme of the UKRI Strategic Priorities Fund.  The slides from Dr Ian McCrea's talk are available here.
  • Mark Gibbs (Head of Space Weather at the UK Met Office) - SWIMMR (Met Office perspective and detailed description of the calls.  The slides from Mark Gibb's talk are available here.

During the lunch break, the Announcement of Opportunity for the five NERC SWIMMR calls was issued on the NERC web site.  The afternoon therefore began with a brief introduction by Jacky Wood to the NERC Announcement of Opportunity, and the particular terms and conditions which it contained.

The remainder of the afternoon session was spent in a Question and Answer session in which attendees were able to ask questions to the speakers about the nature of the programme and the potential timing of future calls, and finally to an informal discussion session, in which participants gathered into groups to discuss the opportunities for funding which had been outlined. 

2019 RAS Council elections

As you may have seen, the nominations for RAS Council are currently open with a deadline of 29 November. MIST falls under the “G” (Geophysics) category and there are up to 3 councillor positions and one vice-president position available. MIST Council strongly encourages interested members of the MIST community to consider standing for election.
Clare Watt (University of Reading) has kindly volunteered to be a point of contact for the community for those who may wish to talk more about being on council and what it involves. Clare is a councillor on RAS Council, with her term due to complete in 2020, and This email address is being protected from spambots. You need JavaScript enabled to view it..


Outcome of SSAP priority project review

From the MIST mailing list:

We are writing to convey the outcome of this year’s priority project “light touch” review, specifically with reference to those projects within the remit of SSAP. We would like to thank all the PIs that originally submitted ideas, and those who provided updates to their projects over the summer. SSAP strongly believe that all the projects submitted are underpinned by strong scientific drivers in the SSAP area.

The “light touch” review was undertaken with a unified approach by SSAP and AAP, considering factors that have led to priority project development (in STFC or other research councils) or new funding for priority projects (1/51 projects in the STFC remit) in the last 12 months. After careful discussion, it was agreed by SSAP and AAP not to select any project where the remit clearly overlaps with UKSA (i.e. space missions or TRL 4+), reflecting STFC’s focus on ground-based observations, science exploitation and TRL 0-3 development. Whilst in no way reflecting the excellence of the science, or community scientific wishes, this approach has resulted in some changes to the list of SSAP priority projects. However, now, unlike at the time of the original call, it is clear that such projects cannot move forwards without UKSA (financial) support, and such funds are already committed according to UKSA’s existing programme. SSAP remain strongly supportive of mission-led science in solar-system exploration, so SSAP have strongly recommended that the high-level discussions between UKSA and STFC continue with a view to supporting a clear joint priority projects call in future, more naturally suited to mission and bi-lateral opportunities.

The priority projects (and PIs) identified by SSAP for 2019/20 are:

  • Solar Atmospheric Modelling Suite (Tony Arber)
  • LARES1: Laboratory Analysis for Research into Extra-terrestrial Samples (Monica Grady)
  • EST: European Solar Telescope (Sarah Matthews)

SSAP requested STFC continue to work with all three projects to expand their community reach and continue to develop the business cases for future (new) funding opportunities. In addition, SSAP have requested that STFC explore ways in which the concept of two projects—“ViCE: Virtual Centres of Excellence Programme / MSEMM Maximising Science Exploitation from Space Science Missions”—can be combined and, with community involvement, generate new funding for science exploitation and maximising scientific return in solar-system sciences. Initially this consultation will occur between SSAP and STFC.

We would like to thank the community again for its strong support, and rapid responses on very short timescales. A further “light touch” review will occur in 2020, with a new call for projects anticipated in 2021. SSAP continue to appreciate the unfamiliar approach a “call for proposals with no funding attached” causes to the community and are continuing to stress to STFC that the community would appreciate clearer guidance and longer timescales in future priority project calls.

Yours sincerely,

Dr Helen Fraser on behalf of SSAP

Nuggets of MIST science, summarising recent MIST papers in a bitesize format.

If you would like to submit a nugget, please contact This email address is being protected from spambots. You need JavaScript enabled to view it. and we will arrange a slot for you in the schedule. Nuggets should be 100–300 words long and include a figure/animation. Please get in touch!

Local Time Asymmetries in Jupiter's Magnetodisc Currents

By Chris Lorch (Lancaster University)

Jupiter’s large, rapidly rotating magnetosphere is highly influenced by the presence of a global, centrifugally confined current disk comprised of co-rotating plasma from the volcanic moon Io. Azimuthal and radial currents flow through this current disk closing via magnetic field aligned currents (FACs), which are associated with Jupiter’s main auroral emission. These currents arise from dynamical processes within the magnetosphere, driven by the transport and circulation of Iogenic plasma. Characterising the structure and asymmetries in this current system is key to deciphering the dominant drivers of Jupiter’s magnetosphere-ionosphere (MI) coupled system and the behaviour of its plasma disk. 

Previous work by Khurana [2001] examined the solar wind influence on Jupiter’s magnetosphere using equatorial maps of Jupiter’s current disk and the results demonstrated clear azimuthal asymmetries fixed with local time (LT). However, the analysis was limited the lack of spacecraft coverage in the dusk – dayside magnetosphere provided by the Galileo spacecraft.  

Maps of current density mapped to Jupiter's equatorial plane, illustrating the azimuthal asymmetries.

Figure 1: Equatorial maps detailing the structure of Jupiter’s current disk with Jupiter located at (0,0). Dashed circles and radial lines represent 20RJ and 1 hr local time boundaries respectively. A compressed bow shock and magnetopause (Joy et al [2002]) are shown as black solid lines. a) The radial height-integrated current density, warmer (cooler) colours are indicative of current flowing radially outwards (inwards). b) The azimuthal height integrated colour density, flowing in the direction of corotation. c) The divergence of the perpendicular height-integrated current density, indicating the location of upward and downward FACs. Warmer (cooler) colours indicate the presence of upward (downward) FACs.

Lorch et al. [2020] determines the structure of the current disk at all LTs by considering magnetometer data at Jupiter from every available spacecraft, including Juno, up to 28 July 2018.  We apply an automated identification tool to magnetometer data from Jupiter’s current disk in conjunction with updated models of Jupiter’s intrinsic magnetic field and current disk geometry. In total, we identify 7382 lobe traversals, calculating the associated height-integrated current density for each crossing.  Additional coverage provided by the later half of the Galileo mission and the recent Juno mission allowed us to map all LTs. Asymmetries exist in both the radial (Figure 1a) and azimuthal (Figure 1b) currents into 20 RJ. Furthermore, we quantify the structure of upward and downward FACs in previously unmapped regions of Jupiter’s magnetosphere (Figure 1c). We find a positive net current density of 1.87 MA / RJ2, suggesting unmapped currents must close either down-tail or along the magnetopause. Our results demonstrate important asymmetries in Jupiter’s current systems that play a crucial role in the MI coupled system. Amalgamating these results into future MI coupling models has the potential to remove discrepancies between model predictions and observations.

For more information, please see the paper:

Lorch, C. T. S., Ray, L. C., Arridge, C. S., Khurana, K. K., Martin, C. J., & Bader, A. (2020). Local time asymmetries in Jupiter's magnetodisc currents. Journal of Geophysical Research: Space Physics, 125, e2019JA027455. https://doi.org/10.1029/2019JA027455 

Where does slow Alfvénic solar wind come from?

By David Stansby (MSSL, UCL) 

The solar wind is a continuous flow of plasma from the surface of the Sun, flowing out into interplanetary space. Faster solar wind is known to originate in large coronal holes, but slower solar wind has a wide range of different sources. A subset of slow solar wind is filled with pure Alfvén waves, much like the fast solar wind, suggesting it has a similar origin in coronal holes.

In our study we tested this theory of coronal hole origin, using Helios in-situ measurements of the solar wind at 0.35 AU. Figure 1 shows a wide range of plasma properties in typical fast solar wind (black), highly Alfvénic slow solar wind (blue), and non-Alfvénic slow wind (red).

Distributions for different solar wind types are compared for proton radial velocity, alpha abundance, proton number density flux, and temperature.Distributions for different solar wind types are compared for proton radial velocity, alpha abundance, proton number density flux, and temperature.

Figure 1: In-situ solar wind properties for three intervals of solar wind, measured at 0.35 AU. The three types of solar wind are Fast (black), Slow Alfvénic (blue), and Slow non-Alfvénic (red).

The fast and Alfvénic slow wind had similar

  • Alpha particle abundances
  • Alpha particle drift speeds
  • Alpha particle temperature anisotropies
  • Alpha to proton temperature ratios (in both parallel and perpendicular directions) 

These similarities imply that the heating and acceleration mechanisms of fast and slow Alfvénic solar wind are qualitatively similar, acting in the same way on protons and alpha particles. This agrees with the theory that slow Alfvénic wind originates in coronal holes, like fast solar wind.

In contrast, the fast and Alfvénic slow wind had different

  • Electron, proton, and alpha particle temperatures
  • Mass fluxes

These differences can be explained by different magnetic field geometries in the low corona: slower wind is released on magnetic field lines which undergo more expansion in the corona, increasing the mass flux and reducing the temperatures. This implies that whilst slow Alfvénic wind originates in coronal holes, it most probably originates in small coronal holes.

For more information, please see:

The origin of slow Alfvénic solar wind at solar minimum, Monthly Notices of the Royal Astronomical Society 492, 39–44 (2020), D Stansby, L Matteini, T S Horbury, D Perrone, R D’Amicis, L Berčič, https://doi.org/10.1093/mnras/stz3422

Bifurcated Region 2 Field-Aligned Currents Associated With Substorms

By Harneet Sangha (University of Leicester)

The Earth’s field-aligned currents (FACs) are a key component of the solar wind-magnetosphere-ionosphere-atmosphere coupled system. They connect the magnetosphere to the ionosphere, forming two concentric rings of opposite polarity currents at dawn and dusk. The inner ring (Region 1, R1), at higher latitudes, connects to the magnetopause, whereas the lower latitude ring (Region 2, R2) connects to the inner magnetosphere. By studying them, we are able to observe the energy transfer throughout the system. They are highly variable, and the small scale changes can be difficult to detect. With the use of the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) (comprising 66-satellites that gather the data), we can observe these small scale, structures and variations in the FACs on short time scales.

In our work, we have observed a new phenomenon which we describe as the bifurcation of the R2 currents, and the formation of a new R2 current ring (seen in Figure 1). These current signatures appear to be associated with the substorm expansion phase, and during ongoing geomagnetic activity they appear to have a 1 hour quasi-periodicity. We suggest that these bifurcations are related fast, westward flows in the midlatitude ionosphere, known as subauroral polarization streams (SAPS).

We have proposed a new mechanism that describes the formation of these current bifurcations - consecutive particle injections into the inner magnetosphere during disturbed conditions cause separate partial ring currents to form, leading to the presence of distinct R2 current systems.

AMPERE current density data.

Figure 1: A series of polar projections of the AMPERE current density data for the Northern Hemisphere on 2 June 2011, from 06:50 to 08:12 UT. The colour scale for downward (blue) and upward (red) FACs saturate at ± 0.5 µA/m2. Concentric circles show colatitudes in steps of 10°, and 12 MLT (local noon) is presented at the top of the plots, with 06 MLT (dawn) on the right. The dashed box shows the dawn-dusk axis. At 06:50 UT a standard R1/R2 FAC distribution is evident. The locations of interest are highlighted in the first panel with arrows, where by 07:44 UT the R2 FACs bifurcate to form two concentric rings and can be seen between 20° and 30° colatitude.

For more information, please see the paper:

Sangha, H., Milan, S. E., Carter, J. A., Fogg, A. R., Anderson, B. J., Korth, H., & Paxton, L. J. (2020). Bifurcated Region 2 field‐aligned currents associated with substorms. Journal of Geophysical Research: Space Physics, 125, e2019JA027041. https://doi.org/10.1029/2019JA027041

Evaluating the Accuracy of Solar Orbiter Plasma Measurements

By Georgios Nicolaou (MSSL, UCL)
The plasma instruments on board Solar Orbiter will determine the three-dimensional velocity distribution functions of the plasma ions and electrons with high time resolution, within heliocentric distances from ~0.3 to 1 au. The analysis of these distributions will determine the plasma bulk parameters (e.g., density, velocity, and temperature). New work by Nicolaou et al. (2019, 2020) assesses the accuracy of these measurements, considering the proton and electron instruments separately.
1. The Impact of Turbulent Solar Wind Fluctuations on Proton Measurements

The Solar Wind Analyser’s Proton Alpha Sensor (SWA-PAS) on board Solar Orbiter will measure solar wind plasma protons. However, due to the dynamic and turbulent nature of solar wind plasma, the accurate determination of the plasma parameters from the observations is significantly challenging. Nicolaou et al. 2019, simulated turbulent solar wind proton plasma that exhibits the typical features of turbulence spectrum. They modelled the expected observations by SWA-PAS (see Figure 1) and analyzed them using standard analysis methods in order to quantify the accuracy of the derived plasma bulk parameters. The results show that the typical turbulence will not significantly affect the accuracy of the high-time resolution measurements by SWA-PAS. In addition, the authors compare the accuracy of the instrument as a function of the acquisition time and discuss the sources of errors in the derived parameters.

Time series of input data compared to modelled plasma moments

Figure 1. Time series of modeled solar wind with a turbulent spectrum consisting of Alfvén waves and slow modes and a comparison to derived moment parameters from the expected SWA-PAS observations at lower resolution. Each panel shows the input data (gray line) and the moments derived from the modeled observations (bullets). The shadowed areas represent the time intervals in which the instrument collects counts to construct an entire 3D VDF. The top panel shows the plasma density the middle panel shows the diagonal elements of the plasma temperature tensor, and the bottom panel shows the plasma bulk speed. Besides the small systematic underestimation of the plasma density and plasma temperature, the derived moments suggest that the accuracy of SWA-PAS measurements, under typical turbulent solar wind conditions, is remarkably high.

2. Determining the Bulk Parameters of Plasma Electrons from Pitch-Angle Distribution Measurements

The Solar Wind Analyser’s Electron Analyser System (SWA-EAS) is designed to observe the solar wind electrons. In burst-mode operations, the instrument will obtain measurements in the 2D velocity space (as opposed to full 3D velocity distributions) in order to construct the pitch angle distributions of plasma electrons. The reduction of one dimension reduces the statistical significance of the observations and makes the analysis more challenging. Nicolaou et al. 2020, investigate the expected accuracy of the derived bulk parameters of supra-thermal electrons, which are often described by kappa distribution functions. They simulate the expected observations within the heliocentric distance range from 0.3 to 1 au and derive the plasma bulk parameters by fitting the synthetic observations (see Figure 2). The study shows that the proper fitting analysis of the measurements can derive the plasma parameters with significant accuracy, even at 1 au, where the expected particle flux is very low.

A comparison of derived plasma parameters to input plasma density.

Figure 2. (From top to bottom) The derived electron density over input density, kappa index, parallel and perpendicular temperature as functions of the input plasma density. The red points represent the mean values (over 200 samples) of the parameters derived by fitting only the measurements with Ci ≥ 1. The blue points represent the mean values of the parameters derived by fitting to all measurements including those with Ci = 0. The shadowed regions represent the standard deviations of the derived parameters. The dashed lines represent the input parameters.

For more information, please see the papers:

Nicolaou, G., Verscharen, D., Wicks, R. T., & Owen, C. J. (2019). The Impact of Turbulent Solar Wind Fluctuations on Solar Orbiter Plasma Proton Measurements. The Astrophysical Journal, 886:101. https://doi.org/10.3847/1538-4357/ab48e3

Nicolaou, G., Wicks, R., Livadiotis, G., Verscharen, D., Owen, C., & Kataria, D. (2020). Determining the Bulk Parameters of Plasma Electrons from Pitch-Angle Distribution Measurements. Entropy, 22, 103. https://doi.org/10.3390/e22010103

Modelling the temporal variability in Saturn's magnetotail current sheet from the Cassini F‐ring orbits

By Omakshi Agiwal (Imperial College London)

The Cassini spacecraft completed 20 high latitude orbits known as the ‘F-ring orbits’ during the end of mission (corresponding to northern Saturnian summer). Each orbit provided a ~2 day sample of the magnetotail region, where the measured radial magnetic field Br and the position of the magnetic equator/magnetotail current sheet centre (indicated by Br=0) showed significant orbit-to-orbit variability, despite a highly repeatable spacecraft trajectory.

Our work considers two well-known sources of temporal variability in the Saturnian magnetosphere:

  1. Solar wind forcing, which acts to displace the magnetic equator from the rotational equator. The forcing increases with radial distance from the planet and is variable with solar wind conditions on ~ week-long timescales.
  2. Planetary period oscillations (PPO), which refer to two magnetic perturbation systems (one in each hemisphere) that rotate independently around Saturn’s spin/dipole axis with periods of ~10.7 hours. They modulate the vertical position and thickness of the magnetotail current sheet depending on their relative strength and phase.

A movie showing a spacecraft trajectory through the modelled current sheet. The results show a good correspondence between magnetometer observations and modelled values as well as illustrating the temporal evolution.Figure 1: (a) Illustrates the spacecraft (blue dot) traversing our temporally variable modelled current sheet, shown by the shaded grey region. The position of the magnetic equator is shown by the dashed black line. The two arrows on the polar-plot show an equatorial projection of the northern (blue) and southern (red) PPO fields rotating with a ~ fixed relative phase (ΔΦ), with the spacecraft on the nightside. (b) Shows the time-series of Br measured by the magnetometer (solid grey line) and the modelled (dashed orange line) from our work. (c) Illustrates the temporal evolution of the z-position of the magnetic equator and the thickness of the current sheet from the model.

We combine models that consider the effects of each perturbation source on Br, and the model output for the magnetotail pass of an example orbit is shown in Figure 1. Overall, we show that the temporal variability in 90% of the F-ring orbits is consistent with the expected variability due to solar wind forcing and dual-PPO modulation. This demonstrates an understanding of the key sources of large scale variability in Saturn’s magnetotail, and shows that magnetotail dynamics can reliably be studied using high latitude orbits (which is novel in our method).

For more information, please see the paper:

Agiwal, O., Hunt, G. J., Dougherty, M. K., Cowley, S. W. H., & Provan, G. ( 2019). Modelling the temporal variability in Saturn's magnetotail current sheet from the Cassini F‐ring orbits. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2019JA027371