MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

STFC Policy Internship Scheme now open

This year has proved the critical importance of science having a voice within Parliament. But how does scientific evidence come to the attention of policy makers? If you are a STFC-funded PhD student, you can experience this first-hand through our Policy Internship Scheme, which has just opened for applications for 2020/21. During these three-month placements, students are hosted either at the Parliamentary Office of Science and Technology (POST) or the Government Office for Science (GO Science).

POST is an independent office of the Houses of Parliament which provides impartial evidence reviews on topical scientific issues to MPs and Peers. Interns at POST will research, draft, edit and publish a briefing paper summarising the evidence base on an important or emerging scientific issue. GO Science works to ensure that Government policies and decisions are informed by the best scientific evidence and strategic long-term thinking. Placements at GO Science are likely to involve undertaking research, drafting briefing notes and background papers, and organising workshops and meetings.

The scheme offers a unique opportunity to experience the heart of UK policy making and to explore careers within the science-policy interface. The placements are fully funded and successful applicants will receive a three-month extension to their final PhD deadline.

For full information and to see case studies of previous interns, please see our website. The closing date is 10 September 2020 at 16.00.

Applied Sciences special issue: Dynamical processes in space plasmas

 

Applied Sciences is to publish a special issue on the topic of dynamical processes in space plasmas which is being guest edited by Georgious Nicolaou. Submissions are welcome until 31 March 2021, and submission instructions for authors can be found on the journal website. For general questions, This email address is being protected from spambots. You need JavaScript enabled to view it..

A Summary of the SWIMMR Kick-Off Meeting

The kick-off event for the Space Weather Innovation, Measurement, Modelling and Risk Study (one of the Wave 2 programmes of the UKRI Strategic Priorities Fund) took place in the Wolfson Library of the Royal Society on Tuesday November 26th. Seventy-five people attended the event, representing a range of academic institutions, as well as representatives from industry, government and public sector research establishments such as the UK Met Office. 

The morning session of the meeting consisted of five presentations, introducing the programme and its relevance to government, the Research Councils and the Met Office, as well as describing details of the potential calls. The presentations were as follows:

  •  Prof John Loughhead (Chief Scientific Advisor to BEIS) - Space Weather Innovation, Measurement, Modelling and Risk Programme (a governmental perspective). The slides from Prof John Loughhead's talk are available here.
  • Prof Chris Mutlow (Director of STFC RAL Space) - SWIMMR: Project funded by the Strategic Priorities Fund (a perspective from STFC).  The slides from Prof Chris Mutlow's talk are available here.
  • Jacky Wood (Head of Business Partnerships at NERC) - Space Weather Innovation, Measurement, Modelling and Risk (SWIMMR) - A NERC perspective.  The slides from Jacky Wood's talk are available here.
  • Dr. Ian McCrea (Senior Programme Manager for SWIMMR) -  SWIMMR: Space Weather Innovation, Measurement, Modelling and Risk: A wave 2 programme of the UKRI Strategic Priorities Fund.  The slides from Dr Ian McCrea's talk are available here.
  • Mark Gibbs (Head of Space Weather at the UK Met Office) - SWIMMR (Met Office perspective and detailed description of the calls.  The slides from Mark Gibb's talk are available here.

During the lunch break, the Announcement of Opportunity for the five NERC SWIMMR calls was issued on the NERC web site.  The afternoon therefore began with a brief introduction by Jacky Wood to the NERC Announcement of Opportunity, and the particular terms and conditions which it contained.

The remainder of the afternoon session was spent in a Question and Answer session in which attendees were able to ask questions to the speakers about the nature of the programme and the potential timing of future calls, and finally to an informal discussion session, in which participants gathered into groups to discuss the opportunities for funding which had been outlined. 

2019 RAS Council elections

As you may have seen, the nominations for RAS Council are currently open with a deadline of 29 November. MIST falls under the “G” (Geophysics) category and there are up to 3 councillor positions and one vice-president position available. MIST Council strongly encourages interested members of the MIST community to consider standing for election.
 
Clare Watt (University of Reading) has kindly volunteered to be a point of contact for the community for those who may wish to talk more about being on council and what it involves. Clare is a councillor on RAS Council, with her term due to complete in 2020, and This email address is being protected from spambots. You need JavaScript enabled to view it..
 

 

Outcome of SSAP priority project review

From the MIST mailing list:

We are writing to convey the outcome of this year’s priority project “light touch” review, specifically with reference to those projects within the remit of SSAP. We would like to thank all the PIs that originally submitted ideas, and those who provided updates to their projects over the summer. SSAP strongly believe that all the projects submitted are underpinned by strong scientific drivers in the SSAP area.

The “light touch” review was undertaken with a unified approach by SSAP and AAP, considering factors that have led to priority project development (in STFC or other research councils) or new funding for priority projects (1/51 projects in the STFC remit) in the last 12 months. After careful discussion, it was agreed by SSAP and AAP not to select any project where the remit clearly overlaps with UKSA (i.e. space missions or TRL 4+), reflecting STFC’s focus on ground-based observations, science exploitation and TRL 0-3 development. Whilst in no way reflecting the excellence of the science, or community scientific wishes, this approach has resulted in some changes to the list of SSAP priority projects. However, now, unlike at the time of the original call, it is clear that such projects cannot move forwards without UKSA (financial) support, and such funds are already committed according to UKSA’s existing programme. SSAP remain strongly supportive of mission-led science in solar-system exploration, so SSAP have strongly recommended that the high-level discussions between UKSA and STFC continue with a view to supporting a clear joint priority projects call in future, more naturally suited to mission and bi-lateral opportunities.

The priority projects (and PIs) identified by SSAP for 2019/20 are:

  • Solar Atmospheric Modelling Suite (Tony Arber)
  • LARES1: Laboratory Analysis for Research into Extra-terrestrial Samples (Monica Grady)
  • EST: European Solar Telescope (Sarah Matthews)

SSAP requested STFC continue to work with all three projects to expand their community reach and continue to develop the business cases for future (new) funding opportunities. In addition, SSAP have requested that STFC explore ways in which the concept of two projects—“ViCE: Virtual Centres of Excellence Programme / MSEMM Maximising Science Exploitation from Space Science Missions”—can be combined and, with community involvement, generate new funding for science exploitation and maximising scientific return in solar-system sciences. Initially this consultation will occur between SSAP and STFC.

We would like to thank the community again for its strong support, and rapid responses on very short timescales. A further “light touch” review will occur in 2020, with a new call for projects anticipated in 2021. SSAP continue to appreciate the unfamiliar approach a “call for proposals with no funding attached” causes to the community and are continuing to stress to STFC that the community would appreciate clearer guidance and longer timescales in future priority project calls.

Yours sincerely,

Dr Helen Fraser on behalf of SSAP

Inter‐hemispheric survey of polar cap aurora

By Jade Reidy, Department of Physics and Astronomy, University of Southampton, UK.

The formation mechanism of polar cap arcs is still an open question. Since they were first discovered (over a century ago), there have been conflicting reports of polar cap arcs forming on open field lines [e.g., Hardy et al., 1982; Carlson and Cowley, 2005] and on closed field lines [e.g., Frank et al., 1982; Fear et al., 2014]. It is possible that there are more than one type of formation mechanism [e.g., Newell et al., 2009; Reidy et al., 2017].

Reidy et al. [2018] investigates the interhemispheric nature of polar cap arcs using low-altitude ultraviolet imaging, combined with particle data, to determine whether they occur on open or closed field lines. Figure 1 shows an example of an image from SSUSI (Special Sensor Ultra-Violet Spectrographic Imager) (left) with the corresponding SSJ/4 particle spectrograms (right). The SSUSI instruments, on board DMSP (Defence Meteorological Satellite Program) spacecraft, are UV imagers that scan across the polar regions, building up images over 20 minutes. The SSJ/4 particle spectrometer is also on board DMSP spacecraft and provides measurements of the particle precipitation directly above the spacecraft.

In Fig. 1 the SSUSI image has been projected on to a magnetic local time grid with noon at the top and dawn to the right. The black and grey dashed lines on the particle spectrograms and corresponding black and grey vertical lines on the DMSP footprint (black line on the SSUSI image) give an estimated position of the poleward edge of the auroral for the electrons and ions respectively (see Reidy et al. [2018] for details). Multiple sun-aligned arcs can be seen poleward of this edge, hence assumed to be occurring within the polar cap. The arcs seen on the dawnside of the SSUSI image are associated with ion and electron precipitation (indicated by red bars on both the DMSP track and the particle spectrograms), similar arcs were also seen in the opposite hemisphere. These arcs are consistent with formation on closed field lines [Fear et al., 2014; Carter et al., 2017]. The arc seen on the duskside of the polar cap is associated with electron-only precipitation (indicated by yellow bars). This kind of particle signature is consistent with accelerated polar rain and is hence consistent formation on open field lines [Newell et al., 2009; Reidy et al., 2017].

Reidy et al. [2018] investigated 21 events in December 2015 using SSUSI images and corresponding SSJ/4 data. Nine of these events contained arcs consistent with a closed field line mechanism, i.e. arcs associated with ion and electron precipitation present in both hemispheres (similar to the arcs on the dawnside of Fig. 1). Six of these events contained arcs that were associated with electron-only precipitation, consistent with an open field line mechanism (e.g. the duskside of Fig. 1). Examples of events containing arcs that were not, at first sight, consistent with either an open or a closed field line formation mechanism are also explored. This study shows the complex nature of polar cap arcs and highlights the needs for future study as there is still much to understand about their formation mechanism.

Please see the paper below for more information:

Reidy, J., R.C Fear, D. Whiter, B.S. Lanchester, A.J. Kavanagh, S.E. Milan, J.A. Carter, L.J. Paxton, and Y. Zhang. (2018), Inter‐hemispheric survey of polar cap aurora, J. Geophys. Res. Space Physics, 123. https://doi.org/10.1029/2017JA025153

Figure 1. An image from the SSUSI instrument on board DMSP spacecraft F17 is shown on the left. The time at the top of the image indicates the time when the spacecraft crossed 70 degrees magnetic latitude as it passed from dawn to dusk (i.e. left to right). The corresponding data from the SSJ/4 particle spectrometer is shown on the right with the electron spectrogram in the top panel and the ion spectrogram at the bottom. Precipitation associated with polar cap arcs is indicated on the DMSP track on the SSUSI image (indicated by a black line) and the particle spectrograms in red for ion and electron signatures and orange for electron-only signatures.