MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Winners of Rishbeth Prizes 2023

We are pleased to announce that following Spring MIST 2023 the Rishbeth Prizes this year are awarded to Sophie Maguire (University of Birmingham) and Rachel Black (University of Exeter).

Sophie wins the prize for the best MIST student talk which was entitled “Large-scale plasma structures and scintillation in the high-latitude ionosphere”. Rachel wins the best MIST poster prize, for a poster entitled “Investigating different methods of chorus wave identification within the radiation belts”. Congratulations to both Sophie and Rachel!

As prize winners, Sophie and Rachel will be invited to write articles for Astronomy & Geophysics, which we look forward to reading.

MIST Council extends their thanks to the University of Birmingham for hosting the Spring MIST meeting 2023, and to the Royal Astronomical Society for their generous and continued support of the Rishbeth Prizes.

Nominations for MIST Council

We are pleased to open nominations for MIST Council. There are two positions available (detailed below), and elected candidates would join Beatriz Sanchez-Cano, Jasmine Kaur Sandhu, Andy Smith, Maria-Theresia Walach, and Emma Woodfield on Council. The nomination deadline is Friday 26 May.

Council positions open for nomination

  • MIST Councillor - a three year term (2023 - 2026). Everyone is eligible.
  • MIST Student Representative - a one year term (2023 - 2024). Only PhD students are eligible. See below for further details.

About being on MIST Council


If you would like to find out more about being on Council and what it can involve, please feel free to email any of us (email contacts below) with any of your informal enquiries! You can also find out more about MIST activities at mist.ac.uk.

Rosie Hodnett (current MIST Student Representative) has summarised their experience on MIST Council below:
"I have really enjoyed being the PhD representative on the MIST council and would like to encourage other PhD students to nominate themselves for the position. Some of the activities that I have been involved in include leading the organisation of Autumn MIST, leading the online seminar series and I have had the opportunity to chair sessions at conferences. These are examples of what you could expect to take part in whilst being on MIST council, but the council will welcome any other ideas you have. If anyone has any questions, please email me at This email address is being protected from spambots. You need JavaScript enabled to view it..”

How to nominate

If you would like to stand for election or you are nominating someone else (with their agreement!) please email This email address is being protected from spambots. You need JavaScript enabled to view it. by Friday 26 May. If there is a surplus of nominations for a role, then an online vote will be carried out with the community. Please include the following details in the nomination:
  • Name
  • Position (Councillor/Student Rep.)
  • Nomination Statement (150 words max including a bit about the nominee and your reasons for nominating. This will be circulated to the community in the event of a vote.)
 
MIST Council contact details

Rosie Hodnett - This email address is being protected from spambots. You need JavaScript enabled to view it.
Mathew Owens - This email address is being protected from spambots. You need JavaScript enabled to view it.
Beatriz Sanchez-Cano - This email address is being protected from spambots. You need JavaScript enabled to view it.
Jasmine Kaur Sandhu - This email address is being protected from spambots. You need JavaScript enabled to view it.
Andy Smith - This email address is being protected from spambots. You need JavaScript enabled to view it.
Maria-Theresia Walach - This email address is being protected from spambots. You need JavaScript enabled to view it.
Emma Woodfield - This email address is being protected from spambots. You need JavaScript enabled to view it.
MIST Council email - This email address is being protected from spambots. You need JavaScript enabled to view it.

RAS Awards

The Royal Astronomical Society announced their award recipients last week, and MIST Council would like to congratulate all that received an award. In particular, we would like to highlight the following members of the MIST Community, whose work has been recognised:
  • Professor Nick Achilleos (University College London) - Chapman Medal
  • Dr Oliver Allanson (University of Birmingham) - Fowler Award
  • Dr Ravindra Desai (University of Warwick) - Winton Award & RAS Higher Education Award
  • Professor Marina Galand (Imperial College London) - James Dungey Lecture

New MIST Council 2021-

There have been some recent ingoings and outgoings at MIST Council - please see below our current composition!:

  • Oliver Allanson, Exeter (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2024 -- Chair
  • Beatriz Sánchez-Cano, Leicester (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2024
  • Mathew Owens, Reading (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2023
  • Jasmine Sandhu, Northumbria (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2023 -- Vice-Chair
  • Maria-Theresia Walach, Lancaster (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2022
  • Sarah Badman, Lancaster (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2022
    (co-opted in 2021 in lieu of outgoing councillor Greg Hunt)

Charter amendment and MIST Council elections open

Nominations for MIST Council open today and run through to 8 August 2021! Please feel free to put yourself forward for election – the voting will open shortly after the deadline and run through to the end of August. The positions available are:

  • 2 members of MIST Council
  • 1 student representative (pending the amendment below passing)

Please email nominations to This email address is being protected from spambots. You need JavaScript enabled to view it. by 8 August 2021. Thank you!

Charter amendment

We also move to amend the following articles of the MIST Charter as demonstrated below. Bold type indicates additions and struck text indicates deletions. Please respond to the email on the MIST mailing list before 8 August 2021 if you would like to object to the amendment; MIST Charter provides that it will pass if less than 10% of the mailing list opposes its passing. 

4.1  MIST council is the collective term for the officers of MIST and consists of six individuals and one student representative from the MIST community.

5.1 Members of MIST council serve terms of three years, except for the student representative who serves a term of one year.

5.2 Elections will be announced at the Spring MIST meeting and voting must begin within two months of the Spring MIST meeting. Two slots on MIST council will be open in a given normal election year, alongside the student representative.

5.10 Candidates for student representative must not have submitted their PhD thesis at the time that nominations close.

Random forest model of ultra‐low frequency magnetospheric wave power

By Sarah Bentley (Northumbria University)

Parameterised (statistical) models are being increasingly used in space physics, both as an efficient way to use large amounts of data and as an important step in real-time modelling, to capture physics on scales not incorporated in numerical modelling. We have used machine learning techniques to create a model for the power in ultra low frequency (1-15mHz, ULF) waves throughout Earth’s magnetosphere. Capturing the power in these global-scale waves is necessary to determine the energisation and transport of high energy electrons in Earth’s radiation belts, and the model can also be used to test how individual wave driving processes combine throughout the magnetosphere.

The model is constructed using ensembles of decision trees (i.e. a random forest). Each decision tree iteratively partitions the given parameter space into variable size bins to reduce the error in the predicted output values. These variable bins mitigate several difficulties inherent to space physics data (sparseness, interdependent driving parameters, nonlinearity) to produce an approximation of ULF wave power in our chosen parameter space: physical driving parameters (solar wind speed vsw, magnetic field component Bz and variance in proton number density var(Np)) and spatial parameters of interest (magnetic local time MLT, magnetic latitude and frequency band).

[frequency, latitude, component, MLT, vsw, Bz, var(Np)] → ULF wave power

It is not always possible to extract all physical processes from parameterised models such as this. Instead we suggest a hypothesis testing framework to examine the physics driving ULF wave power. This formalises the approach taken in full statistical surveys, beginning with dominant driving processes, testing how they manifest in the model, and then examining remaining power.

Plots showing how ULF wave power varies with MLT and a given parameter. Each panel considers a different parameter.

Figure 1: Variation of ULF wave power at one station, 5mHz. Model-predicted power spectral density is shown by magnetic local time at quantiles of (a) speed (for median Bz < 0 and var(Np)), (b) Bz < 0 (for median speed and var(Np)) and (c) var(Np) (for median speed and Bz < 0). Median values for speed, Bz < 0 and var(Np) are 421 km s−1, −1.8 nT and var(Np) = −0.716 log10(cm−3) respectively. (d)-(f) also show variation of wave power with speed, Bz and var(Np) but for Bz > 0 (with a median value of Bz = 1.7 nT held constant for (d) and (f)). Radius of each quantile corresponds to the power spectral density in log10(nT2/Hz) predicted for those solar wind values, at that station, frequency and magnetic local time.

In the paper we demonstrate how this method of iteratively considering smaller scale driving processes applies to magnetic local time asymmetries in ULF wave power. In Figure 1 we can see the wave power predicted by the model when we change one driving parameter and keep the others constant, for Bz<0 and Bz>0 separately. The MLT asymmetries in power clearly change with both driving parameter and there are two separate behaviour regimes for Bz>0, Bz<0. Digging deeper into these results using the framework, we conclude that

  • The dawn-dusk wave power asymmetry is a combined effect of the different radial density profiles and wave driving from magnetopause (“external”) perturbations such as Kelvin-Helmholtz instabilities.
  • We cannot account for the effects of a compressed magnetosphere, but var(Np) does not represent wave driving by magnetopause perturbations.
  • Nor does Bz, which likely represents wave power increases with substorms. 

We also found significant remaining uncertainty with mild solar wind driving, suggesting that the internal state of the magnetosphere should be included in future models.

Please see the paper for full details:

Bentley, S. N., Stout, J., Bloch, T. E., & Watt, C. E. J. (2020). Random forest model of ultra‐low frequency magnetospheric wave power. Earth and Space Science, 7, e2020EA001274. https://doi.org/10.1029/2020EA001274