MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

2020 Space Census

MIST members are invited to submit to the 2020 Space Census!

The 2020 Space Census is the first national survey of the UK space workforce. It is a 5-10 minute anonymous online demographic survey of individuals for anyone working in the UK space sector in any capacity. The results will be used to improve what it’s like to work in the sector, to tackle discrimination, and to make the sector more attractive to new recruits.

More information about the Census, along with answers to commonly asked questions, can be found here.

The UK Space Agency’s press release about the Census can be found here.

STFC Policy Internship Scheme now open

This year has proved the critical importance of science having a voice within Parliament. But how does scientific evidence come to the attention of policy makers? If you are a STFC-funded PhD student, you can experience this first-hand through our Policy Internship Scheme, which has just opened for applications for 2020/21. During these three-month placements, students are hosted either at the Parliamentary Office of Science and Technology (POST) or the Government Office for Science (GO Science).

POST is an independent office of the Houses of Parliament which provides impartial evidence reviews on topical scientific issues to MPs and Peers. Interns at POST will research, draft, edit and publish a briefing paper summarising the evidence base on an important or emerging scientific issue. GO Science works to ensure that Government policies and decisions are informed by the best scientific evidence and strategic long-term thinking. Placements at GO Science are likely to involve undertaking research, drafting briefing notes and background papers, and organising workshops and meetings.

The scheme offers a unique opportunity to experience the heart of UK policy making and to explore careers within the science-policy interface. The placements are fully funded and successful applicants will receive a three-month extension to their final PhD deadline.

For full information and to see case studies of previous interns, please see our website. The closing date is 10 September 2020 at 16.00.

Applied Sciences special issue: Dynamical processes in space plasmas

 

Applied Sciences is to publish a special issue on the topic of dynamical processes in space plasmas which is being guest edited by Georgious Nicolaou. Submissions are welcome until 31 March 2021, and submission instructions for authors can be found on the journal website. For general questions, This email address is being protected from spambots. You need JavaScript enabled to view it..

MIST elections in 2020

The election for the next MIST councillors opens today, and will run until 23:59 on 31 July 2020. The candidates are Michaela Mooney, Matt Owens, and Jasmine Kaur Sandhu. 

If you are subscribed to this mailing list you should receive a bespoke link which will let you vote on the MIST website, which will be sent by This email address is being protected from spambots. You need JavaScript enabled to view it.. If you don’t receive this link, please check your junk folder! The candidates’ platforms are on the voting platform, and also reproduced below for your convenience. 

Michaela Mooney

I’m a final year PhD student at MSSL standing for MIST Council as a student representative. During my PhD, I’ve been actively engaged in the department as a Student Rep in the Staff Student Consultation Committee and in the Equality, Diversity and Inclusion Committee. I’m an active member of the MIST research community through proposals for RAS Discussion meetings and NAM sessions on geomagnetic activity. 

My main goals as a MIST Council representative would be to:

  • lobby funding bodies to reduce the impact of the pandemic on PhD students.
  • facilitate the organisation of virtual conferences and careers days to ensure that students continue to have opportunities to present research and access to careers information.
  • support good practises in equality, diversity and inclusion within the MIST community.

My key priority would be to limit the impact of the pandemic on students and ensure equality of opportunities.

Matt Owens

Now, more than ever, it’s vital our community address its diversity problems. If anyone is standing for MIST council from an underrepresented demographic, I’d encourage you to vote for them; MIST needs their experience and insight. If not, I’ll seek to ensure MIST council continues to promote equality of opportunity and diversity in science.

MIST’s primary role is to represent our solar-terrestrial science within the wider discipline. I’m predominantly a heliospheric scientist, but keep a toe in the solar physics community. E.g., I’ve served in editorial capacities for both JGR and Solar Physics, and have a good deal of experience with both NERC and STFC funding. As such, I’d hope to see MIST working closely with UKSP, as we have a lot of common interest. I am also keen that the MIST community coordinate to make the most of the industrial and operational forecasting opportunities that are open to it. Finally, I’m a very recent convert to open science. I would seek to increase the prevalence of research code publication and use of community tools within our field, for reasons of both efficiency and reproducibility.

Jasmine Kaur Sandhu

I am a post-doctoral research associate at the Mullard Space Science Laboratory, UCL, with a research focus on inner magnetospheric physics. During my time as a Council member I have led a number of initiatives, primarily the MIST Student’s Corner, the MIST Nugget Series, and the MIST online seminar series. If elected, I will continue to focus on supporting early career researchers in ways that promote diversity of both science and the scientists within our community. This will include developing a set of up-to-date, comprehensive, and informative resources on funding opportunities available to early career researchers for travel funding and fellowships. This will be supported by a mentor-like scheme for assistance and guidance on applications.

A Summary of the SWIMMR Kick-Off Meeting

The kick-off event for the Space Weather Innovation, Measurement, Modelling and Risk Study (one of the Wave 2 programmes of the UKRI Strategic Priorities Fund) took place in the Wolfson Library of the Royal Society on Tuesday November 26th. Seventy-five people attended the event, representing a range of academic institutions, as well as representatives from industry, government and public sector research establishments such as the UK Met Office. 

The morning session of the meeting consisted of five presentations, introducing the programme and its relevance to government, the Research Councils and the Met Office, as well as describing details of the potential calls. The presentations were as follows:

  •  Prof John Loughhead (Chief Scientific Advisor to BEIS) - Space Weather Innovation, Measurement, Modelling and Risk Programme (a governmental perspective). The slides from Prof John Loughhead's talk are available here.
  • Prof Chris Mutlow (Director of STFC RAL Space) - SWIMMR: Project funded by the Strategic Priorities Fund (a perspective from STFC).  The slides from Prof Chris Mutlow's talk are available here.
  • Jacky Wood (Head of Business Partnerships at NERC) - Space Weather Innovation, Measurement, Modelling and Risk (SWIMMR) - A NERC perspective.  The slides from Jacky Wood's talk are available here.
  • Dr. Ian McCrea (Senior Programme Manager for SWIMMR) -  SWIMMR: Space Weather Innovation, Measurement, Modelling and Risk: A wave 2 programme of the UKRI Strategic Priorities Fund.  The slides from Dr Ian McCrea's talk are available here.
  • Mark Gibbs (Head of Space Weather at the UK Met Office) - SWIMMR (Met Office perspective and detailed description of the calls.  The slides from Mark Gibb's talk are available here.

During the lunch break, the Announcement of Opportunity for the five NERC SWIMMR calls was issued on the NERC web site.  The afternoon therefore began with a brief introduction by Jacky Wood to the NERC Announcement of Opportunity, and the particular terms and conditions which it contained.

The remainder of the afternoon session was spent in a Question and Answer session in which attendees were able to ask questions to the speakers about the nature of the programme and the potential timing of future calls, and finally to an informal discussion session, in which participants gathered into groups to discuss the opportunities for funding which had been outlined. 

Temporal and Spectral Studies by XMM-Newton of Jupiter’s X-ray Auroras During a Compression Event

By Affelia Wibisono (Mullard Space Science Laboratory, UCL)

Out of all of Jupiter’s aurorae, its X-ray aurora is unique as it is produced by the interactions between the constituents of Jupiter’s atmosphere with both ions and electrons. Furthermore, the X-rays are emitted by the precipitating particles rather than the native Jovian species. The X-ray aurorae are fixed on Jupiter’s frame and often exhibit quasi-periodic oscillations (QPOs) with periods of tens of minutes (e.g. Dunn et al., 2017), however, the origins of the precipitating particles and the source of the QPOs remain to be fully understood.

Contemporaneous observations by XMM-Newton and Chandra of Jupiter’s X-ray aurorae occurred for five hours in June 2017 while Juno was at near apojove. XMM-Newton continued to survey the emissions for a further 18 hours. The southern aurora was visible to XMM-Newton three times while the northern aurora was only seen twice. The planet’s magnetosphere was shown to be compressed by the solar wind during this time.

Wibisono et al., 2020 applied discrete wavelet and Fast Fourier Transforms (FFT) on the XMM-Newton auroral lightcurves from both poles. Figure 1 shows the power spectral density (PSD) plots from the FFT analysis in chronological order. QPOs were not found in the southern lights when it was first in view hence why its PSD plot is not included. The first rotation in the north had a strong pulse with a period of 27 minutes; a result that Chandra agrees with (Weigt et al., 2020). There is a secondary, less powerful beat at 23 minutes that is also observed in the south and then again in the north. This period lasts for a total duration of 12.5 hours, marking it the first time that both poles are seen to pulsate with the same period, at the same time and for more than one Jupiter rotation. The period increased to 33 minutes in the final rotation. The observed periods indicate that ultra-low frequency waves are a likely cause of the pulsations.

Power spectral densities for multiple rotations.

Figure 1: The power spectral density (PSD) plots after the Fast Fourier Transform was applied on the time intervals when regular pulsations occurred. PSDs A and C are for the entire first rotation and start of the second rotation of the northern aurora respectively. PSDs B and D are for the beginning of the second and entire third rotation of the southern aurora respectively. The dashed, dashed-dot and dotted black lines mark the 66th, 90th and 99th percentiles which were calculated by using Monte Carlo methods to produce 10 000 simulated lightcurves and determining the frequency of a periodicity of the observed power was randomly generated. The vertical red dashed lines show when the period is equal to 23 minutes. There were no regular pulsations in the first rotation in the south.

Spectral analysis of the XMM-Newton dataset gave the surprising result that during this particular magnetospheric compression event, the precipitating ions were from inside Jupiter’s magnetosphere. This outcome provides an insight into what drives Jupiter’s X-ray aurorae that have significant implications for our understanding of the wider magnetospheric dynamics at Jupiter.

For more details, see the paper:

Wibisono, A. D., Branduardi‐Raymont, G., Dunn, W. R., Coates, A. J., Weigt, D. M., Jackman, C. M., et al ( 2020). Temporal and Spectral Studies by XMM‐Newton of Jupiter's X‐ray Auroras During a Compression Event. Journal of Geophysical Research: Space Physics, 125, e2019JA027676. https://doi.org/10.1029/2019JA027676