MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

2021 Astronomy Grants

The closing date for the 2021 Astronomy Grants Round is 4th March 2021. Submissions are accepted from now. The Astronomy Guidelines for Applicants have been revised and can be found via the links below (the PDF with the full guidance is available under the ‘who can apply’ section on both pages):

Applicants should ensure they have read the guidelines in detail and contact the office with any queries ahead of submission.

Key points or revisions from the 2020 guidelines have been briefly summarised below for information:

  • Page Limits – The page limit per project has been simplified and is no longer based on a requested FTE calculation.
  • Applicant/Project FTE – There has been a change to the upper limit for requested applicant FTE (25%, not including PI management time). The guidance for total FTE requests per project has also been updated and must be strictly adhered to.
  • Outreach Projects – Clarification on the page limit for outreach projects/outreach funding.
  • Pathways to Impact – UKRI removed the requirement to submit a pathways to impact plan in March 2020; however applicants should still consider impact as part of their case for support (see guidelines for further information).
  • Publications Table – Updates to the information required in the publications table.

New groups submitting their first consolidated grant proposal or those considering a consortium proposal are advised to inform the office ahead of submitting to the closing date. If you have any queries please contact This email address is being protected from spambots. You need JavaScript enabled to view it. or This email address is being protected from spambots. You need JavaScript enabled to view it..

2020 Space Census

MIST members are invited to submit to the 2020 Space Census!

The 2020 Space Census is the first national survey of the UK space workforce. It is a 5-10 minute anonymous online demographic survey of individuals for anyone working in the UK space sector in any capacity. The results will be used to improve what it’s like to work in the sector, to tackle discrimination, and to make the sector more attractive to new recruits.

More information about the Census, along with answers to commonly asked questions, can be found here.

The UK Space Agency’s press release about the Census can be found here.

STFC Policy Internship Scheme now open

This year has proved the critical importance of science having a voice within Parliament. But how does scientific evidence come to the attention of policy makers? If you are a STFC-funded PhD student, you can experience this first-hand through our Policy Internship Scheme, which has just opened for applications for 2020/21. During these three-month placements, students are hosted either at the Parliamentary Office of Science and Technology (POST) or the Government Office for Science (GO Science).

POST is an independent office of the Houses of Parliament which provides impartial evidence reviews on topical scientific issues to MPs and Peers. Interns at POST will research, draft, edit and publish a briefing paper summarising the evidence base on an important or emerging scientific issue. GO Science works to ensure that Government policies and decisions are informed by the best scientific evidence and strategic long-term thinking. Placements at GO Science are likely to involve undertaking research, drafting briefing notes and background papers, and organising workshops and meetings.

The scheme offers a unique opportunity to experience the heart of UK policy making and to explore careers within the science-policy interface. The placements are fully funded and successful applicants will receive a three-month extension to their final PhD deadline.

For full information and to see case studies of previous interns, please see our website. The closing date is 10 September 2020 at 16.00.

Applied Sciences special issue: Dynamical processes in space plasmas

 

Applied Sciences is to publish a special issue on the topic of dynamical processes in space plasmas which is being guest edited by Georgious Nicolaou. Submissions are welcome until 31 March 2021, and submission instructions for authors can be found on the journal website. For general questions, This email address is being protected from spambots. You need JavaScript enabled to view it..

MIST elections in 2020

The election for the next MIST councillors opens today, and will run until 23:59 on 31 July 2020. The candidates are Michaela Mooney, Matt Owens, and Jasmine Kaur Sandhu. 

If you are subscribed to this mailing list you should receive a bespoke link which will let you vote on the MIST website, which will be sent by This email address is being protected from spambots. You need JavaScript enabled to view it.. If you don’t receive this link, please check your junk folder! The candidates’ platforms are on the voting platform, and also reproduced below for your convenience. 

Michaela Mooney

I’m a final year PhD student at MSSL standing for MIST Council as a student representative. During my PhD, I’ve been actively engaged in the department as a Student Rep in the Staff Student Consultation Committee and in the Equality, Diversity and Inclusion Committee. I’m an active member of the MIST research community through proposals for RAS Discussion meetings and NAM sessions on geomagnetic activity. 

My main goals as a MIST Council representative would be to:

  • lobby funding bodies to reduce the impact of the pandemic on PhD students.
  • facilitate the organisation of virtual conferences and careers days to ensure that students continue to have opportunities to present research and access to careers information.
  • support good practises in equality, diversity and inclusion within the MIST community.

My key priority would be to limit the impact of the pandemic on students and ensure equality of opportunities.

Matt Owens

Now, more than ever, it’s vital our community address its diversity problems. If anyone is standing for MIST council from an underrepresented demographic, I’d encourage you to vote for them; MIST needs their experience and insight. If not, I’ll seek to ensure MIST council continues to promote equality of opportunity and diversity in science.

MIST’s primary role is to represent our solar-terrestrial science within the wider discipline. I’m predominantly a heliospheric scientist, but keep a toe in the solar physics community. E.g., I’ve served in editorial capacities for both JGR and Solar Physics, and have a good deal of experience with both NERC and STFC funding. As such, I’d hope to see MIST working closely with UKSP, as we have a lot of common interest. I am also keen that the MIST community coordinate to make the most of the industrial and operational forecasting opportunities that are open to it. Finally, I’m a very recent convert to open science. I would seek to increase the prevalence of research code publication and use of community tools within our field, for reasons of both efficiency and reproducibility.

Jasmine Kaur Sandhu

I am a post-doctoral research associate at the Mullard Space Science Laboratory, UCL, with a research focus on inner magnetospheric physics. During my time as a Council member I have led a number of initiatives, primarily the MIST Student’s Corner, the MIST Nugget Series, and the MIST online seminar series. If elected, I will continue to focus on supporting early career researchers in ways that promote diversity of both science and the scientists within our community. This will include developing a set of up-to-date, comprehensive, and informative resources on funding opportunities available to early career researchers for travel funding and fellowships. This will be supported by a mentor-like scheme for assistance and guidance on applications.

Energetic particle showers over Mars from Comet C/2013 A1 Siding-Spring

By Beatriz Sánchez-Cano, Department of Physics and Astronomy, University of Leicester, UK.

On the 19th October 2014, an Oort-cloud comet named Comet C/2013 A1 (Siding Spring) passed Mars at an altitude of 140,000 kilometres (only one third of the Earth-moon distance) during a single flyby through the inner solar system. This rare opportunity, where an event of this kind occurs only once every 100,000 years, prompted space agencies to coordinate multiple spacecraft to witness the largest meteor shower in modern history and allow us to observe the interaction of a comet’s coma with a planetary atmosphere. However, the event was somehow masked by the impact of a powerful Coronal Mass Ejection from the Sun that arrived at Mars 44 hours before the comet, creating very large disturbances in the Martian upper atmosphere and complicating the analysis of data.

Sánchez-Cano et al. [2018] present energetic particle datasets from the Mars Atmosphere and Volatile EvolutioN (MAVEN) and the Mars Odyssey missions to demonstrate how the Martian atmosphere reacted to such an unusual external event. Comets are believed to have strongly affected the evolution of planets in the past and this was a near unique opportunity to assess whether cometary energetic particles, in particular O+, constitute a notable energy input into Mars’ atmosphere. The study found several Odetections while Mars was within the comet’s environment (at less than a million kilometers distance, see period A in the figure below). In addition, the study discusses several other very interesting showers of energetic particles that occurred after the comet’s closest approach, which are also indicated in the figure below. These detections seem to be related to comet dust tail impacts, which were previously unnoticed. This unexpected detections strongly resemble the tail observations that EPONA/Giotto made of comet 26P/Grigg-Skjellerup in 1992. In conclusion, the authors found that the comet produced a large shower of energetic particles into the Martian atmosphere, depositing a similar level of energy to that of a large space weather storm. This suggests that comets had a significant role on the evolution of the terrestrial planet’s atmospheres in the past.

For more detailed information, please go to the paper:

Sánchez – Cano, B., Witasse, O., Lester, M., Rahmati, A., Ambrosi, R., Lillis, R., et al (2018). Energetic Particle Showers over Mars from Comet C/2013 A1 Siding‐Spring. Journal of Geophysical Research: Space Physics, 123.https://doi.org/10.1029/2018JA025454

Figure: MAVEN and Mars Odyssey observations as a function of time of a powerful Coronal Mass Ejection on 17th October 2014, and of comet Siding-Spring flyby on 19th October 2014. It can be seen that from the point of view of energetic particles, the comet deposited a similar amount of energy than a solar storm on Mars’ atmosphere. (a) MAVEN-SEP ion energy spectra  (b) Mars Odyssey-HEND energy profile from higher-energy channels. (c) Same as in (b) but for lower-energy channels. Periods A and B indicate the comet O+ detections at Mars. Period C shows similar detections although the particle identity cannot be determined. Finally, periods D and E shows dust tail impacts on the instrument.