MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Winners of Rishbeth Prizes 2023

We are pleased to announce that following Spring MIST 2023 the Rishbeth Prizes this year are awarded to Sophie Maguire (University of Birmingham) and Rachel Black (University of Exeter).

Sophie wins the prize for the best MIST student talk which was entitled “Large-scale plasma structures and scintillation in the high-latitude ionosphere”. Rachel wins the best MIST poster prize, for a poster entitled “Investigating different methods of chorus wave identification within the radiation belts”. Congratulations to both Sophie and Rachel!

As prize winners, Sophie and Rachel will be invited to write articles for Astronomy & Geophysics, which we look forward to reading.

MIST Council extends their thanks to the University of Birmingham for hosting the Spring MIST meeting 2023, and to the Royal Astronomical Society for their generous and continued support of the Rishbeth Prizes.

Nominations for MIST Council

We are pleased to open nominations for MIST Council. There are two positions available (detailed below), and elected candidates would join Beatriz Sanchez-Cano, Jasmine Kaur Sandhu, Andy Smith, Maria-Theresia Walach, and Emma Woodfield on Council. The nomination deadline is Friday 26 May.

Council positions open for nomination

  • MIST Councillor - a three year term (2023 - 2026). Everyone is eligible.
  • MIST Student Representative - a one year term (2023 - 2024). Only PhD students are eligible. See below for further details.

About being on MIST Council


If you would like to find out more about being on Council and what it can involve, please feel free to email any of us (email contacts below) with any of your informal enquiries! You can also find out more about MIST activities at mist.ac.uk.

Rosie Hodnett (current MIST Student Representative) has summarised their experience on MIST Council below:
"I have really enjoyed being the PhD representative on the MIST council and would like to encourage other PhD students to nominate themselves for the position. Some of the activities that I have been involved in include leading the organisation of Autumn MIST, leading the online seminar series and I have had the opportunity to chair sessions at conferences. These are examples of what you could expect to take part in whilst being on MIST council, but the council will welcome any other ideas you have. If anyone has any questions, please email me at This email address is being protected from spambots. You need JavaScript enabled to view it..”

How to nominate

If you would like to stand for election or you are nominating someone else (with their agreement!) please email This email address is being protected from spambots. You need JavaScript enabled to view it. by Friday 26 May. If there is a surplus of nominations for a role, then an online vote will be carried out with the community. Please include the following details in the nomination:
  • Name
  • Position (Councillor/Student Rep.)
  • Nomination Statement (150 words max including a bit about the nominee and your reasons for nominating. This will be circulated to the community in the event of a vote.)
 
MIST Council contact details

Rosie Hodnett - This email address is being protected from spambots. You need JavaScript enabled to view it.
Mathew Owens - This email address is being protected from spambots. You need JavaScript enabled to view it.
Beatriz Sanchez-Cano - This email address is being protected from spambots. You need JavaScript enabled to view it.
Jasmine Kaur Sandhu - This email address is being protected from spambots. You need JavaScript enabled to view it.
Andy Smith - This email address is being protected from spambots. You need JavaScript enabled to view it.
Maria-Theresia Walach - This email address is being protected from spambots. You need JavaScript enabled to view it.
Emma Woodfield - This email address is being protected from spambots. You need JavaScript enabled to view it.
MIST Council email - This email address is being protected from spambots. You need JavaScript enabled to view it.

RAS Awards

The Royal Astronomical Society announced their award recipients last week, and MIST Council would like to congratulate all that received an award. In particular, we would like to highlight the following members of the MIST Community, whose work has been recognised:
  • Professor Nick Achilleos (University College London) - Chapman Medal
  • Dr Oliver Allanson (University of Birmingham) - Fowler Award
  • Dr Ravindra Desai (University of Warwick) - Winton Award & RAS Higher Education Award
  • Professor Marina Galand (Imperial College London) - James Dungey Lecture

New MIST Council 2021-

There have been some recent ingoings and outgoings at MIST Council - please see below our current composition!:

  • Oliver Allanson, Exeter (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2024 -- Chair
  • Beatriz Sánchez-Cano, Leicester (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2024
  • Mathew Owens, Reading (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2023
  • Jasmine Sandhu, Northumbria (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2023 -- Vice-Chair
  • Maria-Theresia Walach, Lancaster (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2022
  • Sarah Badman, Lancaster (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2022
    (co-opted in 2021 in lieu of outgoing councillor Greg Hunt)

Charter amendment and MIST Council elections open

Nominations for MIST Council open today and run through to 8 August 2021! Please feel free to put yourself forward for election – the voting will open shortly after the deadline and run through to the end of August. The positions available are:

  • 2 members of MIST Council
  • 1 student representative (pending the amendment below passing)

Please email nominations to This email address is being protected from spambots. You need JavaScript enabled to view it. by 8 August 2021. Thank you!

Charter amendment

We also move to amend the following articles of the MIST Charter as demonstrated below. Bold type indicates additions and struck text indicates deletions. Please respond to the email on the MIST mailing list before 8 August 2021 if you would like to object to the amendment; MIST Charter provides that it will pass if less than 10% of the mailing list opposes its passing. 

4.1  MIST council is the collective term for the officers of MIST and consists of six individuals and one student representative from the MIST community.

5.1 Members of MIST council serve terms of three years, except for the student representative who serves a term of one year.

5.2 Elections will be announced at the Spring MIST meeting and voting must begin within two months of the Spring MIST meeting. Two slots on MIST council will be open in a given normal election year, alongside the student representative.

5.10 Candidates for student representative must not have submitted their PhD thesis at the time that nominations close.

Nuggets of MIST science, summarising recent papers from the UK MIST community in a bitesize format.

If you would like to submit a nugget, please fill in the following form: https://forms.gle/Pn3mL73kHLn4VEZ66 and we will arrange a slot for you in the schedule. Nuggets should be 100–300 words long and include a figure/animation. Please get in touch!
If you have any issues with the form, please contact This email address is being protected from spambots. You need JavaScript enabled to view it.. 

The Nonlinear Evolution of Whistler-Mode Chorus waves: How Modulation Instabilities Can Be a Route to Tone Formation

By Daniel Ratliff (Northumbria University)

Whistler-Mode Chorus (WMC) waves remain a key contributor to the processes underpinning space weather modelling and have garnered considerable interest for their unique frequency properties (known as tones, where the frequency will rise or fall coherently). This role and phenomena are in no small part due to the interplay between these waves and the electrons present in the magnetosphere. At present, these wave particle interactions are difficult to model simultaneously effectively, and we normally restrict ourselves to the effect of one on the other – either a known wave is used to develop a particle distribution, or a supplied particle distribution generates WMC waves. Can we develop models that do both? And furthermore, can we develop a model that can reproduce this interesting set of frequency dynamics?

In our paper, we use formal perturbation techniques to derive a reduced, nonlinear model for (parallel propagating) WMC that is driven by wave-particle interactions via ponderomotive effects. Our first attempt, the famous Nonlinear Schrodinger equation, fails to generate tones – and so we dig a little deeper to find a term responsive for nonlinear frequency shifts. Surprisingly, this new term responsible for tones vanishes precisely at the WMC band gap at half the electron gyrofrequency, and provides a theoretical basis for why such a bandgap exists. By exploring this model numerically, we also find that there are cases where this tonal behaviour comes with a significant enhancement of the electron kinetic energy – so maybe the magnetosphere’s dawn chorus is at times a swan song in disguise?

Results of numerical simulation of the model including a) a power spectral density for waves with frequencies near omega/Omega = 0.2, and snapshots of a rising tone event that leads to particle clustering and kinetic energy enhancement (panels b) through d))

 

See publication for further information:

Ratliff DJ, Allanson O. The nonlinear evolution of whistler-mode chorus: modulation instability as the source of tones. Journal of Plasma Physics. 2023;89(6):905890607. doi:10.1017/S0022377823001265

Modeling and Observations of the Effects of the Alfvén Velocity Profile on the Ionospheric Alfvén Resonator

By Rosie Hodnett (University of Leicester)

The Ionospheric Alfvén Resonator (IAR) occurs when Alfvén waves partially reflect from boundaries in the ionosphere, towards the bottom of the ionosphere and above the F-region peak. The frequencies of the IAR are strongly controlled by the plasma mass density in the ionosphere, which is not uniform.

We have observed IAR in induction coil magnetometer data at Eskdalemuir, UK (BGS site), and extracted the harmonic frequencies for nine years of data. To model the harmonic frequencies, we used the International Reference Ionosphere and the International Geomagnetic Reference Field to model Alfvén velocity profiles. By solving a one-dimensional wave equation, we modelled the first five harmonics of the IAR for times where we had data. The wave structure of the electric field for a uniform case is shown in panel (a), and the resulting modelled harmonics for a non-uniform case is shown in panel (b). We modelled the frequencies with the lower boundary condition of the electric field of the wave being a node (shown in the figure below) and an antinode. By looking at the percentage difference between the fundamental frequency and the average separation of the harmonics (ζ) for both the node and antinode models and comparing this with the data, we find that the lower boundary is closest to being a node. ζ is presented for the node case, with UT, in panels (c) and (d), which show the data and the model respectively, binned by UT. The trend of increasing ζ towards midnight is due to changing Alfvén velocity profiles (shown in panel (e)), and suggests that the ionosphere is becoming more non-uniform. As such, measurements of IAR could be used to gain insight into the shape of the Alfvén velocity profile of the ionosphere.

Figure: (a) Shows the wave structure of the first three harmonics of the electric field for the IAR for a uniform Alfvén velocity profile, and (b) for a non-uniform Alfvén velocity profile, with a node at the lower boundary. (c) Shows the percentage offset of the fundamental frequency and the average harmonic frequency separation for the data, and (d) for the model, for the node case. For each day where there is data, the values are averaged into hourly bins of UT. Green shaded bins have a significant number of data points. (e) Shows average modelled Alfvén velocity profiles for 18:00 – 01:00 UT, normalised to their minimum value.


BGS induction coil magnetometer data, search for 'induction coil': https://webapps.bgs.ac.uk/services/ngdc/
accessions/index.html

See publication for further information:

Hodnett, R. M., Yeoman, T. K., Beggan, C. D., & Wright, D. M. (2024). Modeling and observations of the effects of the Alfvén velocity profile on the Ionospheric Alfvén Resonator. Journal of Geophysical Research: Space Physics, 129, e2023JA032308. https://doi.org/10.1029/2023JA032308

Topology of turbulence within collisionless plasma reconnection

Bogdan Hnat (University of Warwick)

Collisionless magnetic reconnection [1] and plasma turbulence [2] are fundamental mechanisms that transfer energy across scales and between electromagnetic fields and particles. Stretched turbulent vortices and thin reconnection current sheets are prime sites of plasma heating and particle acceleration. Magnetic field line topology is central to both these processes.

We have classified the magnetic field topology observed as the four MMS spacecraft fly through a well resolved reconnection site. The MMS spacecraft separation defines a spatial 'yardstick', which is of order of the ion inertial range di, for sampling magnetic field topology. However, spatial variation of the topology is indirectly captured on a much finer spatial scale due to high time resolution of the magnetic field measurements, 8192 samples per second.

We find two distinct types of the magnetic field line topology near and at the electron dissipation region (EDR). At the edges of the EDR turbulent-like topology, identical to the topology of stretched vortices in hydrodynamic turbulence, is dominant. It coincides with large high-frequency electromagnetic perturbations. At the EDR the topology departs from turbulence and the structures appear to be two-dimensional, coinciding with suppression of electromagnetic fluctuations. The topology of the magnetic field line directly orders electron acceleration and heating. Suprathermal electrons are absent where turbulent-like topology dominates, but the bulk electron temperature anisotropy is enhanced. Reduced two-dimensional topology at the EDR coincides with the suprathermal electrons. The turbulent-like topology can arise in EMHD in scales smaller than electron inertial scale when vorticity dominates the dynamics. We find that vorticity is indeed dominant at all times within our interval.

"Panels
Panels (a), (b) and (c): Time series of in situ observations of: (a) the magnetic field magnitude (black) and the electric field component E_N (blue) in the event LMN coordinates, (b) band pass filtered magnetic field components (blue) and magnetic field magnitude (black) within frequency range 64-256 Hz; the dashed red vertical lines mark the outer extent of large magnetic field fluctuations, and (c) the same quantity as panel (b) calculated for the electric field fluctuations. All traces are based on the reconnection region transit seen by MMS 3. The EDR is indicated with blue shading on all panels. Green shading indicates the time interval in which at least one spacecraft samples the EDR. Panel (d) shows the phase space of invariants of magnetic field gradient tensor. Elliptic (flux ropes) and hyperbolic (X-point) magnetic field lines are separated by the magenta line. Panel (c) shows phase space of invariants for the curl-free deformations of magnetic field lines. The red line is the boundary of possible invariants. The magenta line in panel (c) corresponds to triaxial deformations with eigenvalue ratios -3:-1:4 (Rs<0) and 3:1:-4 (Rs>0), as found in the strain tensor of a three dimensional hydrodynamic flow.


References:
[1] J. Birn, E.R. Priest, Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations (Cambridge University Press, New York, 2007).
[2] Matthaeus, W.H. and Velli, M.,Space Science Reviews, 160(1), pp.145-168 (2011).

 

See publication for further information:
Hnat, Bogdan, Sandra Chapman, and Nicholas Watkins. "Topology of turbulence within collisionless plasma reconnection." Scientific Reports 13.1 (2023): 18665.

Plasma vorticity in the high-latitude ionosphere

By Gareth Chisham (British Antarctic Survey)

Measurements of ionospheric plasma flow vorticity can be used for studying ionospheric plasma transport processes, such as convection and turbulence, over a wide range of spatial scales. This study presents an analysis of probability density functions (PDFs) of ionospheric vorticity for selected regions of the northern hemisphere high-latitude ionosphere as measured by the Super Dual Auroral Radar Network (SuperDARN) over a 6-year interval (2000-2005 inclusive). Making certain assumptions, the observed asymmetric vorticity PDFs can be decomposed into two separate components: (1) A single-sided function that results from the large-scale vorticity inherent in the ionospheric convection pattern, driven by magnetic reconnection; (2) A symmetric double-sided function that results from meso-scale vorticity that derives from fluid processes such as turbulence, and from measurement uncertainties.

Figure with three vertical panels. This figure demonstrates the decomposition of the probability density function (PDF) of ionospheric vorticity into its large-scale and meso-scale components. The data is from 73-77 degrees AACGM latitude and 0800-1100 MLT (dawn convection cell), for IMF By positive conditions, for the years 2000-2006 inclusive. (a) PDF of all the measured vorticity measurements; (b) Separated components of the PDF with model fits; (c) Percentage contribution of each component for different values of vorticity.
This figure demonstrates the decomposition of the probability density function (PDF) of ionospheric vorticity into its large-scale and meso-scale components. The data is from 73-77 degrees AACGM latitude and 0800-1100 MLT (dawn convection cell), for IMF By positive conditions, for the years 2000-2006 inclusive. (a) PDF of all the measured vorticity measurements; (b) Separated components of the PDF with model fits; (c) Percentage contribution of each component for different values of vorticity.


Being able to model ionospheric vorticity in this way will help to improve models of ionospheric plasma flow that are often used in larger-scale system models. At the present time, these plasma flow models typically only consider the larger-scale convection flow. Our observation of a significant meso-scale flow vorticity component due to turbulence will have implications for the fidelity of these models.

See paper for further details: Chisham, G. and Freeman, M. P. (2023). Separating contributions to plasma vorticity in the high-latitude ionosphere from large-scale convection and meso-scale turbulence. Journal of Geophysical Research: Space Physics, 128, e2023JA031885, https://doi.org/10.1029/2023JA031885.

Detection of the northern infrared aurora at Uranus using the W.M. Keck II Telescope and NIRSPEC instrument

By Emma Thomas (University of Leicester)

Three decades of searching for the infrared aurorae finally come to a successful conclusion as portions of the northern (IAU southern) aurorae have been confirmed at Uranus. The icy planet represents an enigma within our solar system, with the first and only visit by Voyager II in 1986, it remains one of the least documented planets in our solar system. This is exceptionally apparent with the planet’s history of auroral observations, where the UV aurorae have been observed a handful of times but no infrared (IR) counterpart has been confirmed, despite both aurorae appearing at Jupiter and Saturn. Analysis of IR aurorae at both Jupiter and Saturn have challenged what we know about magnetosphere-ionosphere coupling, highlighting a need for IR analysis at Uranus to uncover its mysteries. Since 2020 our team has meticulously analysed archived data of Uranus during 2006 from the Keck II telescope on Mauna Kea in Hawai’i. The timing of these observations was key, close to equinox, as it provided an optimal view of the predicted locations of the northern and southern aurorae. By examining the emission lines from these aurorae (the emitting ion being H3+) between 3.94 to 4.01 μm, we carried out a full spectrum best fit across 5 fundamental lines for each spatial pixel across the planet’s disk. By comparing these lines at specific locations, we were able to identify an average 88% increase in column ion densities with no significant temperature changes localised close to or at expected auroral locations for the northern aurora. With this confirmation at Uranus, we look forward to a new age of auroral investigations at both ice giant planets.

Measured H3+ Q(1,0-) intensity mapped across the upper atmosphere of Uranus against Uranian latitude and arbitrary longitude, (b) Total H3+ Emission calculated from the temperature and column density (explained in detailed in the Methods), (c) Estimated temperatures of the H3+ emissions from all five Q-branch lines and (d) Estimated column densities of H3+ emissions from all five Q-branch. The latitude is planetocentric whereas the longitude is arbitrary due to the loss of the Uranian Longitude System (ULS) since Voyager II. The solid black lines mark out the boundaries of E1 (on the left) and E2 (on the right). Within the boundaries, the Enhanced regions are unshaded, the Dim regions are shaded with dots, and the Intermediate regions are shaded with diagonal lines. Latitudes and/or longitudes that were not recorded during the observations have been greyed out.

References:

Thomas, E.M., Melin, H., Stallard, T.S. et al. Detection of the infrared aurora at Uranus with Keck-NIRSPEC. Nat Astron (2023). https://doi.org/10.1038/s41550-023-02096-5