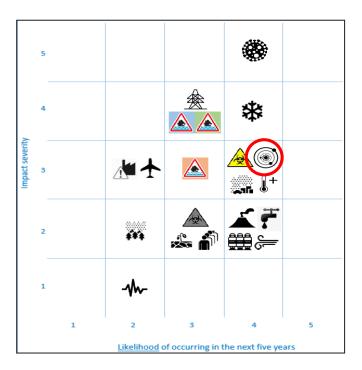
#### SWIMMR


Mark Gibbs Head of Government Resilience Services & Head of Space Weather Met Office 26<sup>th</sup> November 2019

SWIMMR launch meeting, Royal Society, Nov 2019



#### Met Office Contents

- 1. Overview of Met Office activities
- 2. More information on each project



#### Met Office

### Met Office Space Weather Operations Centre (MOSWOC)

- Fully integrated within Met Office Operations Centre
- National capability supporting;
  - Government, military & critical sectors
- 1 dedicated forecaster on duty 24/7
  - Mutual back-up with Volcanic Ash Advisory Centre position
- One of only 3 24/7 manned centres globally



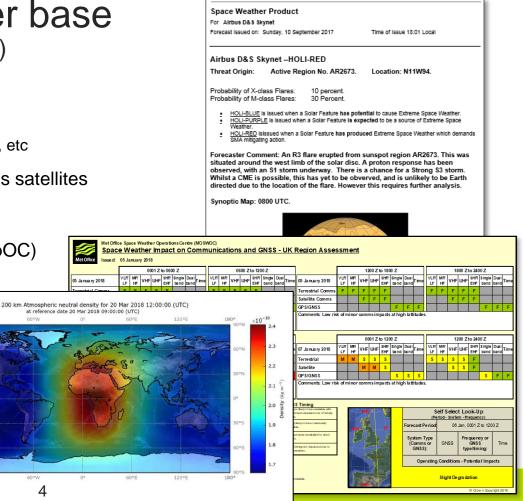
# Met Office Growing user base (number & criticality)

Met Office

1809

30.09

60°5


180

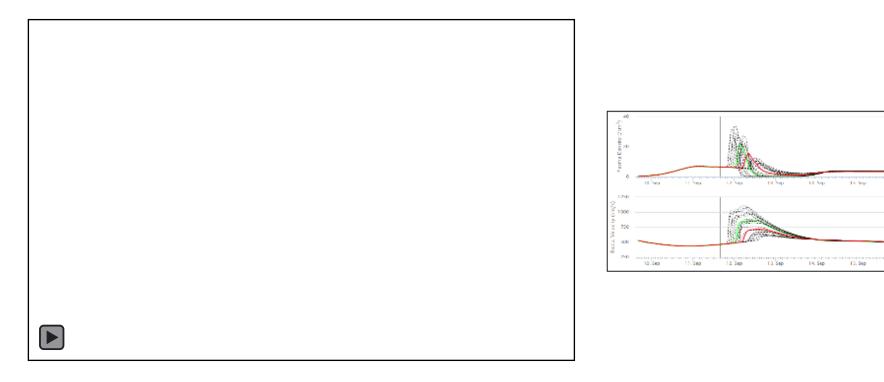
#### **Existing users**

- Government & CNI operators
  - E.g. National Grid, satellite operators, CAA, etc
- UK military Skynet secure communications satellites

#### New /developing users

- UK Space Operation Centre (SpOC / NSpOC)
- ICAO Global Space Weather Centre
- UK spaceport
- UK satellite constellations






### Motivation for SWIMMR

### Met Office Motivation

- MOSWOC created by importing SWPC capability
- No UK space weather research programme results in continued dependence on US
- Lack of diversity in models
- Cost if transitioning research into operations is expensive

## Met Office CME / Geomagnetic focus



The Serge

16. Sep.

### *Solution Met Office* Why SWIMMR?

- 1. Fill capability gaps (now & future)
  - Radiation effects
  - Ionospheric impacts navigation & communications
  - Atmospheric density (orbit determination & collision risk)
  - Electric-field modelling
- 2. Utilise UK knowledge & capability
  - Showcase UK science
  - Create diversity in forecast solutions
- 3. Reduce the research-to-operations gap



## The projects

### Met Office The opportunities – STFC led

- S1: Improved in-situ radiation measurements for space and aviation
- S2: Support for technology testing and modelling
- S3: Support for the transition from research to operations
- S4: Forecasting from the Sun to L1
- S5: Support for a ground radiation monitoring network
- S6: Production of an updated space weather impact study

### Met Office The opportunities – NERC led

- N1: Improvement of satellite risk forecasts
- N2: Improvement of aviation risk forecasts
- N3: Improved forecasting of effects on GNSS and HF communications
- N4: Improved forecasting of ground level current effects
- N5: Improved forecasts of space weather effects on satellite drag

#### Met Office Radiation effects

- S1: In-situ radiation measurements for space and aviation
- S5: Support for a ground radiation monitoring network
- S2: Support for technology testing and modelling
- N1: Improvement of satellite risk forecasts
- N2: Improvement of aviation risk forecasts

# Met Office S1: Improved in-situ radiation measurements for space and aviation

Why

- Radiation risk to spacecraft & aircraft is a key issue
- Need data to support modelling, verification & nowcasts
- Re-invigorate the capability to build indigenous UK state-of-the-art monitors

- Define measurement requirements
- Develop & build 12 monitors (utilising existing heritage)
  - 2 satellite, 10 aircraft
- Fly the monitors to provide new data into MOSWOC
- Begin development & testing of miniaturised radiation monitor

# Met Office S5: Support for development of a ground radiation monitoring network

Why

- Radiation risk to aircraft is key issue and risk to autonomous vehicles is unknown
- Need data to support modelling, verification & nowcasts
- No monitoring in the UK
- Existing neutron monitors are large & expensive

- Define measurement requirements
- Explore potential for smaller & more affordable monitors (c.f. neutron monitors)
- Establish a prototype network

# Met Office S2: Support for technology testing and modelling

Why

- Limited understanding of the performance of electronics in an 'severe' radiation environment
- Grow userbase for ChipIR and hence increase testing & knowledge

- Contribute to upgrade of ChipIR to increase independence from main beam
- Offset the cost of testing electronic components / systems
- If suitable, test detectors developed in S1

## Met Office N1: Improvement of satellite (radiation) risk forecasts

Why

- Growing dependency on space based infrastructure
- Need improved nowcast & forecast capability
  - multiple orbits
  - range of impacts
  - accuracy

# Met Office N1: Improvement of satellite (radiation) risk forecasts

- NRT forecast of high energy electron radiation for user defined orbits in GEO, MEO & LEO
- Forecasts of risk of internal charging, dose, non-ionising dose and single event upsets along specified satellite orbits in LEO, MEO and GEO
- Forecast of risk of damage or degradation due to trapped particle radiation
- Nowcast of risk of damage due to surface charging and sources such as SEPs
- Ingest & driven by suitable data sources
- Support operational implementation in MOSWOC
- Validation & verification

## Met Office N2: Improvement of aviation (radiation) risk forecasts

Why

- Radiation dose concern for aircrew & passengers
- Now part of ICAO Space Weather Advisory Service
- No UK capability to support response to a severe event

# Met Office N2: Improvement of aviation (radiation) risk forecasts

What

- Global-scale 3D near real-time information and alerts for SEP (& GCR) impact for aircraft avionics, passengers and crew
  - hindcast, nowcast and potentially forecast
- Account for concurrent geomagnetic disturbances in admitting solar particles to lower latitudes.
- Ingest suitable data from ground, airborne and space networks to drive models in near real time (especially S1 & S5)
- Support operational implementation in MOSWOC
- Validation & verification

Note: should be capable of indicating threshold exceedance e.g. ICAO thresholds

#### **Met Office** Ionospheric & thermospheric effects

- N3: Improved forecasting of effects on GNSS and HF communications
- N5: Improved forecasts of space weather effects on satellite drag

Met Office N3: Improved forecasting of effects on GNSS and HF communications

Why

- Growing dependence on GNSS
- HF comms continue to be important for aviation & military
- Now part of ICAO Space Weather Advisory Service

# Met Office N3: Improved forecasting of effects on GNSS and HF communications

What

- Coupled NRT ionosphere-thermosphere 3D assimilative forecast model.
- Assimilate range of data including
  - satellite orbit and accelerometer data,
  - thermospheric radiance data,
  - electron density profiles or virtual height profiles,
  - total electron content (TEC).
- Regional mapping of TIDs and/or TEC gradients.
- Low and high latitude scintillation mapping.
- Capable of delivering relevant GNSS, SBAS and HF products.
- Support operational implementation in MOSWOC following validation & verification

Note: should be capable of indicating threshold exceedance e.g. ICAO thresholds

# Met Office N5: Improved forecasts of space weather effects on satellite drag

Why

- Supports UK sovereign launch strategy
- Support future UK funded satellite constellations
- Supports UK space surveillance & tracking

# Met Office N5: Improved forecasts of space weather effects on satellite drag

- Coupled NRT ionosphere-thermosphere 3D assimilative forecast model.
- Assimilate range of data including
  - satellite orbit and accelerometer data,
  - thermospheric radiance data,
  - electron density profiles or virtual height profiles,
  - total electron content (TEC).
- A system level model capable of meeting the satellite orbit nowcasting and forecasting objectives.
- Support operational implementation in MOSWOC
- Validation & verification

Met Office N4: Improved forecasting of ground level current effects

Why

- Provide geoelectric field information
  - GIC to electricity Grid
  - Pipe-to-soil Potential (PSP) to pipeline operators
  - GIC in rail network

Met Office N4: Improved forecasting of ground level current effects

- NRT nowcast and forecast of ground-level geomagnetic and geoelectric fields across the UK.
- Nowcasts and forecasts of GIC in the UK high-voltage electricity transmission network.
- Nowcasts and forecasts of PSP in the UK high-pressure gas transmission network.
- In conjunction with the Met Office, a system of web displays that are updated by the forecasts and nowcasts.
- Support operational implementation in MOSWOC
- Validation & verification

#### Met Office S4: Forecasting from the Sun to L1

#### Why

- Improve arrival time prediction of CMEs
- Predict evolution of solar wind at L1

- Optimising existing techniques
  - Data assimilation
  - Ensembles
- More computational efficient models/tools

# Met Office S3: Support for the transition from research to operations

Why

• Make research to operations more efficient

- Create a R2O environment similar to operational MOSWOC IT system
- Enable academic remote access
- Enable academics, Met Office Scientists & IT staff to collaborate

Met Office S6: Production of an updated space weather impact study

Why

• RAEng report remains the 'Global standard' but is nearly 10 years old

What

• Update the report



### Additional requirements

#### Met Office Suitable for operational use

Meet user & technical requirements e.g.

- Models must
  - run automatically without human intervention
  - not fail when data is missing
  - use supportable software languages
  - Etc....
- Met Office requires royalty free, irrevocable, non-exclusive licence
  - Developing institute retains IPR

All detailed in the AO

#### Sector Met Office Information day

Information day hosted at Met Office Exeter Thursday 19<sup>th</sup> December Details will appear on STFC SWIMMR web pages

AO encourages consultation with Met Office Information day is optional Information on requirements & approach Opportunity for two-way discussion

Final day for consultation with Met Office15<sup>th</sup> January

#### **Met Office**

For more information please contact



www.metoffice.gov.uk



simon.machin@metoffice.gov.uk or david.Jackson@metoffice.gov.uk



+44 (0)7825 935006 or +44 (0)3301350639

www.metoffice.gov.uk